Abstract
The purpose of this paper is to study codes over finite principal ideal rings. To do this, we begin with codes over finite chain rings as a natural generalization of codes over Galois rings GR(p e, l) (including \({\mathbb{Z}_{p^e}}\)). We give sufficient conditions on the existence of MDS codes over finite chain rings and on the existence of self-dual codes over finite chain rings. We also construct MDS self-dual codes over Galois rings GF(2e, l) of length n = 2l for any a ≥ 1 and l ≥ 2. Torsion codes over residue fields of finite chain rings are introduced, and some of their properties are derived. Finally, we describe MDS codes and self-dual codes over finite principal ideal rings by examining codes over their component chain rings, via a generalized Chinese remainder theorem.
Similar content being viewed by others
References
Blake I.F.: Codes over certain rings. Inform. Contr. 20, 396–404 (1972)
Blake I.F.: Codes over integer residue rings. Inform. Contr. 29, 295–300 (1975)
Bourbaki N.: Algebra, Chapters 1–3. Springer-Verlag, New-York (1989)
Bourbaki N.: Algebra, Chapters 3–7. Springer-Verlag, New-York (2003)
Bourbaki N.: Commutative Algebra, Chapters 1–7. Springer-Verlag, New-York (1989)
Constantinescu I., Heise W., Honold T.: Monomial extensions of isometries between codes over \({\mathbb{Z}_m}\) . In: Proceedings of the 5th International Workshop on Algebraic and Combinatorial Coding Theory (ACCT ’96), Unicorn Shumen, pp. 98–104 (1996).
Conway J.H., Sloane N.J.A.: Self-dual codes over the integers modulo 4. J. Combin. Theory, Ser. A 62, 30–45 (1993)
Dougherty S.T., Gulliver T.A., Park Y.H., Wong J.N.C.: Optimal linear codes over \({\mathbb Z_m}\) . J. Korean Math. Soc. 44, 1139–1162 (2007)
Dougherty S.T., Park Y.H., Kim S.Y.: Lifted codes and their weight enumerators. Discrete Math. 305, 123–135 (2005)
Dougherty S.T., Shiromoto K.: MDR codes over Z k . IEEE Trans. Inform. Theory 46, 265–269 (2000)
Greferath M., Schmidt S.E.: Finite-ring combinatorics and MacWilliams’ equivalence theorem. J. Combin. Theory, Ser. A. 92, 17–28 (2000)
Gulliver T.A., Kim J.-L., Lee Y.: New MDS or near-MDS self-dual codes (Preprint) (2007).
Hammons A.R. Jr., Kumar P.V., Calderbank A.R., Sloane N.J.A.: The \({\mathbb Z_4}\) linearity of Kerdock, Preparata, Goethals and related codes. IEEE Trans. Inform. Theory 40, 301–319 (1994)
Honold T., Landjev I.: Linear codes over finite chain rings. Electron. J. Combin. 7, #R11 (2000).
Kunz E.: Introduction to Commutative Algebra and Algebraic Geometry. Birkahäuser, Boston (1985)
Norton G.H., Sălăgean A.: On the Hamming distance of linear codes over a finite chain ring. IEEE Trans. Inform. Theory 46, 1060–1067 (2000)
MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes. North-Holland, Amsterdam, The Netherlands (1997).
Matsumura H.: Commutative Ring Theory. Cambridge University Press, Cambridge, UK (1989)
McDonald B.R.: Finite Rings with Identity. Marcel Dekker, Inc., New York (1974)
Nebe G., Rains E.M., Sloane N.J.A.: Self-Dual Codes and Invariant Theory. Springer, Berlin (2006)
Nechaev A.A.: The Kerdock code in a cyclic form. Diskret. Mat. 1, 123–139 (1989). English translation in Discrete Math. Appl. 1, 365–384 (1991).
Park Y.H.: Modular independence and generator matrices for codes over \({\mathbb{Z}_m}\) (Preprint) (2007).
Pless, V.S., Huffman, W.C. (eds): Handbook of Coding Theory. Elsevier, Amsterdam (1998)
Shankar P.: On BCH codes over arbitrary integer rings. IEEE Trans. Inform. Theory 25, 480–483 (1979)
Spiegel E.: Codes over Z m . Inform. Contr. 35, 48–52 (1977)
Spiegel E.: Codes over Z m revisited. Inform. Contr. 37, 100–104 (1979)
Wan Z.X.: Lectures on Finite Fields and Galois Rings. World Scientific Publishing Co., Inc., River Edge, NJ (2003)
Wood J.: Duality for modules over finite rings and applications to coding theory. Am. J. Math. 121, 555–575 (1999)
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by J. D. Key.
About this article
Cite this article
Dougherty, S.T., Kim, JL. & Kulosman, H. MDS codes over finite principal ideal rings. Des. Codes Cryptogr. 50, 77–92 (2009). https://doi.org/10.1007/s10623-008-9215-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10623-008-9215-5