Skip to main content

Mutually orthogonal latin squares based on cellular automata

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

We investigate sets of mutually orthogonal latin squares (MOLS) generated by cellular automata (CA) over finite fields. After introducing how a CA defined by a bipermutive local rule of diameter d over an alphabet of q elements generates a Latin square of order \(q^{d-1}\), we study the conditions under which two CA generate a pair of orthogonal Latin squares. In particular, we prove that the Latin squares induced by two Linear Bipermutive CA (LBCA) over the finite field \(\mathbb {F}_q\) are orthogonal if and only if the polynomials associated to their local rules are relatively prime. Next, we enumerate all such pairs of orthogonal Latin squares by counting the pairs of coprime monic polynomials with nonzero constant term and degree n over \(\mathbb {F}_q\). Finally, we present a construction for families of MOLS based on LBCA, and prove that their cardinality corresponds to the maximum number of pairwise coprime polynomials with nonzero constant term. Although our construction does not yield all such families of MOLS, we show that the resulting lower bound is asymptotically close to their actual number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Allender E., Bernasconi A., Damm C., von zur Gathen J., Saks M.E., Shparlinski I.E.: Complexity of some arithmetic problems for binary polynomials. Comput. Complex. 12((1–2)), 23–47 (2003).

    Article  MathSciNet  Google Scholar 

  2. Benjamin A.T., Bennett C.D.: The probability of relatively prime polynomials. Math. Mag. 80(3), 196–202 (2007).

    Article  MathSciNet  Google Scholar 

  3. Colbourn C.J.: Construction techniques for mutually orthogonal latin squares. In: Combinatorics Advances, pp. 27–48. Springer, Berlin (1995).

    Chapter  Google Scholar 

  4. del Rey Á.M., Mateus J.P., Sánchez G.R.: A secret sharing scheme based on cellular automata. Appl. Math. Comput. 170(2), 1356–1364 (2005).

    MathSciNet  MATH  Google Scholar 

  5. Deißler J.: A resultant for Hensel’s lemma. arXiv preprint arXiv:1301.4073 (2013).

  6. Eloranta K.: Partially permutive cellular automata. Nonlinearity 6(6), 1009–1023 (1993).

    Article  MathSciNet  Google Scholar 

  7. Gauß C.F.: Disquisitiones arithmeticae. Humboldt-Universität zu Berlin (1801).

  8. Gelfand I.M., Kapranov M., Zelevinsky A.: Discriminants, Resultants, and Multidimensional Determinants. Springer, Berlin (2008).

    MATH  Google Scholar 

  9. Golomb S.W., Posner E.C.: Rook domains, latin squares, affine planes, and error-distributing codes. IEEE Trans. Inf. Theory 10(3), 196–208 (1964).

    Article  MathSciNet  Google Scholar 

  10. Gorodilova A., Agievich S., Carlet C., Hou X., Idrisova V., Kolomeec N., Kutsenko A., Mariot L., Oblaukhov A., Picek S., Preneel B., Rosie R., Tokareva N.N.: The Fifth International Students’ Olympiad in Cryptography—NSUCRYPTO: Problems and their Solutions. CoRR abs/1906.04480 (2019).

  11. Hedlund G.A.: Endomorphisms and automorphisms of the shift dynamical systems. Math. Syst. Theory 3(4), 320–375 (1969).

    Article  MathSciNet  Google Scholar 

  12. Hou X., Mullen G.L.: Number of irreducible polynomials and pairs of relatively prime polynomials in several variables over finite fields. Finite Fields Appl. 15(3), 304–331 (2009).

    Article  MathSciNet  Google Scholar 

  13. Kari J.: Theory of cellular automata: a survey. Theor. Comput. Sci. 334(1–3), 3–33 (2005).

    Article  MathSciNet  Google Scholar 

  14. Keedwell A.D., Dénes J.: Latin Squares and their Applications. Elsevier, Amsterdam (2015).

    MATH  Google Scholar 

  15. Lidl R., Niederreiter H.: Introduction to Finite Fields and their Applications. Cambridge University Press, Cambridge (1994).

    Book  Google Scholar 

  16. MacNeish H.F.: Euler squares. Ann. Math. 23, 221–227 (1922).

    Article  MathSciNet  Google Scholar 

  17. Mariot L., Formenti E., Leporati A.: Constructing orthogonal latin squares from linear cellular automata. CoRR abs/1610.00139. http://arxiv.org/abs/1610.00139 (2016).

  18. Mariot L., Formenti E., Leporati A.: Enumerating orthogonal latin squares generated by bipermutive cellular automata. In: Proceedings of the Cellular Automata and Discrete Complex Systems—23rd IFIP WG 1.5 International Workshop, AUTOMATA 2017, Milan, Italy, 7–9 June 2017, pp. 151–164 (2017).

    Chapter  Google Scholar 

  19. Mariot L., Leporati A.: Sharing secrets by computing preimages of bipermutive cellular automata. In: Proceedings of the Cellular Automata—11th International Conference on Cellular Automata for Research and Industry, ACRI 2014, Krakow, Poland, 22–25 Sept 2014, pp. 417–426 (2014).

    Google Scholar 

  20. Mariot L., Leporati A.: A cryptographic and coding-theoretic perspective on the global rules of cellular automata. Nat. Comput. 17(3), 487–498 (2018).

    Article  MathSciNet  Google Scholar 

  21. Mariot L., Leporati A., Dennunzio A., Formenti E.: Computing the periods of preimages in surjective cellular automata. Nat. Comput. 16(3), 367–381 (2017).

    Article  MathSciNet  Google Scholar 

  22. Mariot L., Picek S., Leporati A., Jakobovic D.: Cellular automata based S-boxes. Cryptogr. Commun. 11(1), 41–62 (2019).

    Article  MathSciNet  Google Scholar 

  23. Montgomery D.C.: Design and Analysis of Experiments. Wiley, Hoboken (2017).

    Google Scholar 

  24. Moore C.: Predicting nonlinear cellular automata quickly by decomposing them into linear ones. Phys. D: Nonlinear Phenom. 111(1–4), 27–41 (1998).

    Article  MathSciNet  Google Scholar 

  25. Moore C., Drisko A.A., et al.: Algebraic properties of the block transformation on cellular automata. Complex Syst. 10(3), 185–194 (1996).

    MathSciNet  MATH  Google Scholar 

  26. Pedersen J.: Cellular automata as algebraic systems. Complex Syst. 6(3), 237–250 (1992).

    MathSciNet  MATH  Google Scholar 

  27. Reifegerste A.: On an involution concerning pairs of polynomials over \({\mathbb{F}}_2\). J. Comb. Theory Ser. A 90(1), 216–220 (2000).

    Article  MathSciNet  Google Scholar 

  28. Stinson D.R.: Combinatorial characterizations of authentication codes. Des. Codes Cryptogr. 2(2), 175–187 (1992).

    Article  MathSciNet  Google Scholar 

  29. The Online Encyclopedia of Integer Sequences (OEIS). Sequence A002450. http://oeis.org/A002450. Accessed 12 Apr 2019

  30. Vaudenay S.: On the need for multipermutations: Cryptanalysis of MD4 and SAFER. In: Proceedings of the Fast Software Encryption: Second International Workshop, Leuven, Belgium, 14–16 Dec 1994, pp. 286–297 (1994).

    Chapter  Google Scholar 

  31. Wilson R.M.: Concerning the number of mutually orthogonal latin squares. Discret. Math. 9(2), 181–198 (1974).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Arthur Benjamin, Curtis Bennett and Igor Shparlinski for their insightful suggestions on how to count the number of pairs of coprime polynomials with nonzero constant term. Further, the authors thank the anonymous reviewers for their useful comments to improve the readability of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Mariot.

Additional information

Communicated by C. J. Colbourn.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been partially supported by COST Action IC1405, “Reversible Computation—Extending the Horizons of Computing”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mariot, L., Gadouleau, M., Formenti, E. et al. Mutually orthogonal latin squares based on cellular automata. Des. Codes Cryptogr. 88, 391–411 (2020). https://doi.org/10.1007/s10623-019-00689-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-019-00689-8

Keywords

Mathematics Subject Classification

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy