Skip to main content

New hemisystems of the Hermitian surface

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

Constructing hemisystems of the Hermitian surface is a well known, apparently difficult, problem in Finite geometry. So far, a few infinite families and some sporadic examples have been constructed. One of the different approaches relies on the Fuhrmann-Torres maximal curve and provides a hemisystem in \(PG(3,p^2)\) for every prime p of the form \(p=1+4a^2\), a even. Here we show that this approach also works in \(PG(3,p^2)\) for every prime \(p=1+4a^2\), a odd. The resulting hemisystem gives rise to two weight linear codes and strongly regular graphs whose properties are also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Bamberg J., Giudici M., Royle G.F.: Every flock generalized quadrangle has a hemisystem. Bull. Lond. Math. Soc. 42(5), 795–810 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  2. Bamberg J., Giudici M., Royle G.F.: Hemisystems of small flock generalized quadrangles. Des. Codes Crypt. 67(1), 137–157 (2013).

    Article  MathSciNet  MATH  Google Scholar 

  3. Bamberg J., Kelly S., Law M., Penttila T.: Tight sets and m-ovoids of finite polar spaces. J. Comb. Theory Ser. A 114(7), 1293–1314 (2007).

    Article  MathSciNet  MATH  Google Scholar 

  4. Bamberg J., Lee M., Momihara K., Xiang Q.: A new infinite family of hemisystems of the hermitian surface. Combinatorica 38(1), 43–66 (2018).

    Article  MathSciNet  MATH  Google Scholar 

  5. Calderbank R., Kantor W.M.: The geometry of two-weight codes. Bull. Lond. Math. Soc. 18(2), 97–122 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  6. Cossidente A.: Combinatorial structures in finite classical polar spaces. Surv. Comb. 440, 204–237 (2017).

    MathSciNet  MATH  Google Scholar 

  7. Cossidente A., Pavese F.: Intriguing sets of quadrics in pg (5, q). Adv. Geom. 17(3), 339–345 (2017).

    Article  MathSciNet  MATH  Google Scholar 

  8. Cossidente A., Penttila T.: Hemisystems on the hermitian surface. J. Lond. Math. Soc. 72(3), 731–741 (2005).

    Article  MathSciNet  MATH  Google Scholar 

  9. Fuhrmann R., Torres F.: The genus of curves over finite fields with many rational points. Manuscr. Math. 89(1), 103–106 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  10. Hirschfeld J., Korchmáros G., Torres F.: Algebraic Curves Over a Finite Field. Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2013).

    Google Scholar 

  11. Hou X.D.: Lectures on Finite Fields, Vol. 190. AMS & Graduate Studies in Mathematics (2018).

  12. Kenneth I., Michael R.: A classical introduction to modern number theory. Math. Gaz. 76(476), 316–317 (1992).

    Google Scholar 

  13. Korchmáros G., Nagy G.P., Speziali P.: Hemisystems of the hermitian surface. J. Comb. Theory Ser. A 165, 408–439 (2019).

    Article  MathSciNet  MATH  Google Scholar 

  14. Korchmáros G., Torres F.: Embedding of a maximal curve in a hermitian variety. Compos. Math. 128(1), 95–113 (2001).

    Article  MathSciNet  MATH  Google Scholar 

  15. OEIS. http://oeis.org/a002496.

  16. Pavese F.: Finite classical polar spaces and their geometry (2021).

  17. Segre B.: Forme e geometrie hermitiane, con paricolare riguardo al caso finito. Ann. Mat. 70, 1–201 (1965).

    Article  MATH  Google Scholar 

  18. Serre J.-P.: Lectures on \( N_X (p) \). CRC Press, Boca Raton (2016).

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The research of Vincenzo Pallozzi Lavorante was partially supported by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA - INdAM) and by the National Science Foundation under Grant No. 2127742.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincenzo Pallozzi Lavorante.

Additional information

Communicated by G. Korchmaros.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

We provide a proof of Proposition 6.7. Since our proof relies on cyclotomic fields from algebraic number theory, we present it in the form of an appendix.

Let \({\mathbb {Q}}(\zeta _m)\) the cyclotomic field of mth roots of unity with \(\zeta _m=e^{2\pi i /m} \in {\mathbb {C}}\). In particular, the cyclotomic field \({\mathbb {Q}}(\zeta _{16})\) contains \(\sqrt{2}\) as an integer. Let \({\mathfrak {b}}\) a prime ideal of \({\mathbb {Q}}(\zeta _{16})\) such that \({\mathfrak {b}}\) contains p (i.e. \({\mathfrak {b}} \mid p\)). The extension \({\mathfrak {b}} \mid p\) is unramified and \({\mathbb {Z}}[\zeta _{16}]/{\mathfrak {b}} \cong {\mathbb {F}}_{p^4}\); see [12, Proposition 13.2.5] and [11, Section 4.5]. Note that \(h=\pm \sqrt{2} \pmod {{\mathfrak {b}}}\). We may assume \(h \equiv \sqrt{2} \pmod {{\mathfrak {b}}}\).

Proof of Proposition 6.7

We do the computation for \(q \equiv 13 \pmod {16}\), the proofs for the other cases being analogous.

$$\begin{aligned} \begin{aligned} (1+h)^\frac{q+1}{2}h^\frac{q-1}{2}&\equiv (1+\sqrt{2})^\frac{q+1}{2} (\sqrt{2})^\frac{q-1}{2} \pmod {{\mathfrak {b}}} \\&=(\sqrt{2}+2)^\frac{q+1}{2} \frac{1}{\sqrt{2}}\\&=(\zeta _8+\zeta _8^{-1}+2)^\frac{q+1}{2}\frac{1}{\sqrt{2}}\\&=(\zeta _{16}+\zeta _{16}^{-1})^{q+1}\frac{1}{\sqrt{2}}\\&\equiv (\zeta _{16}+\zeta _{16}^{-1})(\zeta _{16}^{13}+\zeta _{16}^{-13}) \frac{1}{\sqrt{2}} \pmod {{\mathfrak {b}}}\\&\equiv (\zeta _{16}+\zeta _{16}^{-1})(\zeta _{16}^{-3}+\zeta _{16}^{3}) \frac{1}{\sqrt{2}} \pmod {{\mathfrak {b}}}\\&=(\zeta _{16}^4+\zeta _{16}^{-2}+\zeta _{16}^2+\zeta _{16}^{-4})\frac{1}{\sqrt{2}}\\&=(\zeta _8+\zeta _8^{-1})\frac{1}{\sqrt{2}}=1 \square \end{aligned} \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pallozzi Lavorante, V., Smaldore, V. New hemisystems of the Hermitian surface. Des. Codes Cryptogr. 91, 293–307 (2023). https://doi.org/10.1007/s10623-022-01107-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-022-01107-2

Keywords

Mathematics Subject Classification

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy