Skip to main content

Advertisement

Log in

Introgression at differentially aged hybrid zones in red-tailed chipmunks

  • Published:
Genetica Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Hybrid zones allow us to investigate the maintenance and the break down of reproductive isolation; they are a window into the speciation process. Tamias ruficaudus (red-tailed chipmunk) has a roughly ring-like distribution in the Inland Northwest and includes two morphologically well-differentiated subspecies, T. r. ruficaudus (in the eastern portion of its range) and T. r. simulans (in the western portion). These taxa meet at two contact zones: the Lochsa River in Idaho and 200 km to the north, near Whitefish, Montana. The Lochsa Zone is encompassed within the Clearwater River Drainage, which has been proposed as a glacial refugium for many taxa throughout the Pleistocene, whereas the Whitefish Zone was under the Cordilleran ice sheet during the most recent glacial maxima approximately 10,000 years ago. Mitochondrial DNA introgression has been documented at both contact zones, yet the subspecies remain significantly distinct with respect to bacular morphology and no intermediate morphologies have ever been reported. Here, we elucidate differentiation and introgression of the nuclear genome using ten microsatellite loci and compare findings to previously described mitochondrial DNA haplotype distribution and introgression. We found significant substructure in the nuclear data; each subspecies is divided into at least two genetically distinct demes. At the Lochsa contact zone, individuals restricted to the mtDNA zone of introgression form a distinct deme at microsatellite loci whereas in the younger, Whitefish contact zone, there is no hybrid-zone specific group. The genetic distances of the demes within these two subspecies indicate recent northward expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson EC, Thompson EA (2002) A model-based method for identifying species hybrids using multilocus genetic data. Genetics 160:1217–1229

    CAS  PubMed  Google Scholar 

  • Barton NH, Hewitt GM (1985) Analysis of hybrid zones. Annu Rev Ecol Syst 16:113–148

    Article  Google Scholar 

  • Bilgin R (2007) Kgtests: a simple Excel macro program to detect signatures of population expansion using microsatellites. Mol Ecol Notes 7:416–417

    Article  CAS  Google Scholar 

  • Brumfield RT, Jernigan RW, McDonald DB, Braun MJ (2001) Evolutionary implications of divergent clines in an avian (Manacus: Aves) hybrid zone. Evolution 55:2070–2087

    CAS  PubMed  Google Scholar 

  • Carstens BC, Degenhardt JD, Stevenson AL, Sullivan J (2005) Accounting for coalescent stochasticity in testing phylogeographic hypotheses: modeling Pleistocene population structure in the Idaho Giant Salamander Dicamptodon aterrimus. Mol Ecol 14:255–265

    Article  CAS  PubMed  Google Scholar 

  • Cavalli-Sforza LL, Edwards AWF (1967) Phylogenetic analysis: models and estimation procedures. Evolution 21:550–570

    Article  Google Scholar 

  • Coyne J, Orr HA (2004) Speciation. Sinauer Associates, Sunderland, Massachusetts

    Google Scholar 

  • Daubenmire R (1952) Plant geography of Idaho. In: Davis RJ (ed) Flora of Idaho. Brigham Young University Press, Provo, Utah, pp 1–17

    Google Scholar 

  • Delcourt PA, Delcourt HR (1993) Paleoclimates, paleovegetation, and paleoXoras during the late Quaternary. In: Flora of North America Editorial Committee (ed) Flora of North America, vol 1, 1st edn. Oxford University Press, New York, pp 71–94

    Google Scholar 

  • Detling LE (1968) Historical background of the flora of the Pacific Northwest. Bulletin No. 13. Museum of Natural History, University of Oregon, Eugene

    Google Scholar 

  • Dobzhansky T (1951) Genetics and the origin of species, 3rd edn. Columbia University Press, New York

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software structure: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform 1:47–50

    CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Good JM, Sullivan J (2001) Phylogeography of the red-tailed chipmunk (Tamias ruficaudus), a northern rocky mountain endemic. Mol Ecol 10:2683–2695

    Article  CAS  PubMed  Google Scholar 

  • Good JM, Demboski JR, Nagorsen DW, Sullivan J (2003) Phylogeography and introgressive hybridization: chipmunks (genus Tamias) in the northern rocky mountains. Evolution 57:1900–1916

    PubMed  Google Scholar 

  • Good J, Hird S, Reid N, Demboski J, Steppan S, Martin-Nims T, Sullivan J (2008) Ancient hybridization and mitochondrial capture between two distantly related species of chipmunks (Tamias: Rodentia). Mol Ecol 17:1313–1327

    Article  CAS  PubMed  Google Scholar 

  • Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Gustincich S, Manfioletti G, Delsal G, Schneider C, Carninci P (1991) A fast method for high-quality genomic DNA extraction from whole human blood. BioTechniques 11:298–302

    CAS  PubMed  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Article  Google Scholar 

  • Hardy OJ, Charbonnel N, Freville H, Heuertz M (2003) Microsatellite allele sizes: a simple test to assess their significance on genetic differentiation. Genetics 163:1467–1482

    CAS  PubMed  Google Scholar 

  • Harrison R, Bogdanowicz S, Hoffmann R, Yensen E, Sherman P (2003) Phylogeny and evolutionary history of the ground squirrels (Rodentia: Marmotinae). J Mammal Evol 10:249–276

    Article  Google Scholar 

  • Heller HC (1971) Altitudinal zonation of chipmunks (genus: Eutamias): interspecific aggression. Ecology 52:312–319

    Article  Google Scholar 

  • Heller HC, Gates DM (1971) Altitudinal zonation of chipmunks (genus Eutamias): interspecific aggression. Ecology 52:424–433

    Article  Google Scholar 

  • Hey J (2005) On the number of new world founders: a populations genetic portrait of the peopling of the Americas. PLoS Biol 3(6):e193

    Article  PubMed  Google Scholar 

  • Hey J, Nielsen R (2004) Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics 167:747–760

    Article  CAS  PubMed  Google Scholar 

  • Hird S, Sullivan J (2009) Assessment of gene flow across a hybrid zone in red-tailed chipmunks (Tamias ruficaudus). Mol Ecol 18:3097–3109

    Article  PubMed  Google Scholar 

  • Howell AH (1922) Diagnoses of seven new chipmunks of genus Eutamias, with a list of the American species. J Mammal 3:178–185

    Article  Google Scholar 

  • Huelsenbeck J, Andolfatto P (2007) Inference of population structure under a Dirichlet process model. Genetics 175:1787–1802

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck J, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic tress. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Langella O (2002) Populations 1.2.28: population genetic software (individuals or populations distances, phylogenetic trees). CNRS, France

    Google Scholar 

  • Mack RN, Rutter NW, Bryant VM Jr, Valastro S (1978) Reexamination of postglacial vegetation history in northern Idaho, Hager Pond, Bonner County. Quat Res 10:241–255

    Article  Google Scholar 

  • Maddison DR, Maddison WP (2003) MACCLADE. Sinauer & Associates, Sunderland, Massachusetts

    Google Scholar 

  • Martinsen G, Whitham T, Turek R, Keim P (2001) Hybrid populations selectively filter gene introgression between species. Evolution 55:1325–1335

    CAS  PubMed  Google Scholar 

  • Mayr E (1942) Systematics and the origin of species. Columbia University Press, New York

    Google Scholar 

  • Mayr E (1963) Animal species and evolution. Belknap Press, Cambridge

    Google Scholar 

  • Minin V, Abdo Z, Joyce P, Sullivan J (2003) Performance-based selection of likelihood models for phylogeny estimation. Syst Biol 52:674–683

    Article  PubMed  Google Scholar 

  • Nielsen R, Wakeley J (2001) Distinguishing migration from isolation: a Markov chain Monte Carlo approach. Genetics 158:885–896

    CAS  PubMed  Google Scholar 

  • Nosil P (2008) Speciation with gene flow could be common. Mol Ecol 17:2103–2106

    Article  PubMed  Google Scholar 

  • Patterson BD, Heaney LR (1987) Preliminary analysis of geographic variation in red-tailed chipmunks (Eutamias ruficaudus). J Mammal 68:782–791

    Article  Google Scholar 

  • Patterson BD, Thaeler CSJ (1982) The mammalian baculum: hypotheses on the nature of bacular variability. J Mammal 63:1–15

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2)—population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Reich DE, Goldstein DB (1998) Genetic evidence for a Paleolithic human population expansion in Africa. Proc Natl Acad Sci U S A 95:8119–8123

    Article  CAS  PubMed  Google Scholar 

  • Reid N, Hird S, Schulte-Hostedde AI, Sullivan J (2010) Examination of nuclear loci across a zone of mitochondrial introgression between Tamias ruficaudus and Tamias amoenus. J Mammal (in press)

  • Rice WR, Hostert EE (1993) Laboratory experiments on speciation: what have we learned in 40 years. Evolution 47:1637–1653

    Article  Google Scholar 

  • Ronquist F, Huelsenbeck J (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Schulte-Hostedde AI, Gibbs HL, Millar JS (2000) Microsatellite DNA loci suitable for parentage analysis in the yellow-pine chipmunk (Tamias amoenus). Mol Ecol 9:2180–2181

    Article  CAS  PubMed  Google Scholar 

  • Sullivan J, Joyce P (2005) Model selection in phylogenetics. Annu Rev Ecol Evol Syst 36:445–466

    Article  Google Scholar 

  • Sullivan J, Abdo Z, Joyce P, Swofford DL (2005) Evaluating the performance of a successive-approximations approach to parameter optimization in maximum-likelihood phylogeny estimation. Mol Biol Evol 22:1386–1392

    Article  CAS  PubMed  Google Scholar 

  • Swofford DL (2002) PAUP*. phylogenetic analysis using parsimony (*and Other Methods). Sinauer & Associates, Sunderland, Massachusetts

    Google Scholar 

  • van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Wakeley J (2000) The effects of subdivision on the genetic divergence of populations and species. Evolution 54:1092–1101

    CAS  PubMed  Google Scholar 

  • White JA (1953) The baculum in the chipmunks of western North America. Univ Kans Mus Nat Hist Publ 5:611–631

    Google Scholar 

  • Wilson GA, Rannala B (2003) Bayesian inference of recent migration rates using multilocus genotypes. Genetics 163:1177–1191

    PubMed  Google Scholar 

  • Won YJ, Hey J (2005) Divergence population genetics of chimpanzees. Mol Biol Evol 22:297–307

    Article  CAS  PubMed  Google Scholar 

  • Wu C-I (2001) The genic view of the process of speciation. J Evol Biol 14:851–865

    Article  Google Scholar 

Download references

Acknowledgments

We thank J. Good and the UI Mammalogy classes (1999–2003) for assistance with field collection. The Field Museum of Natural History, Royal British Columbia Museum, Victoria, Burke Museum of Natural History and Culture and the Connor (Washington State University) provided tissue samples. L. Waits, M. Cantrell, B. Carstens, M. Koopman and T. Pelletier, C. Baers and two anonymous reviewers provided valuable comments on this manuscript. This work was funded by NSF DEB-0717426 (to JS) and DEB-0716200 (to JD). Analyses were run on the bioinformatics core facility supported by the Initiative for Bioinformatics and Evolutionary Studies (IBEST) and funded by NHI (NCRR 1P20RRO16448-01) and NSF (EPS-809935).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah Hird.

Appendix 1

Appendix 1

See Table 6.

Table 6 Sampling localities for all individuals; latitude and longitude, number collected (N) and description of localities

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hird, S., Reid, N., Demboski, J. et al. Introgression at differentially aged hybrid zones in red-tailed chipmunks. Genetica 138, 869–883 (2010). https://doi.org/10.1007/s10709-010-9470-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-010-9470-z

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy