Skip to main content

Efficient anomaly detection from medical signals and images

  • Published:
International Journal of Speech Technology Aims and scope Submit manuscript

Abstract

Anomaly detection is a very vital area in medical signal and image processing due to its importance in automatic diagnosis. This paper presents three efficient anomaly detection approaches for applications related to Electroencephalogram (EEG) signal processing and retinal image processing. The first approach depends on the utilization of Scale-Invariant Feature Transform (SIFT) for automatic seizure detection. The second one is based on the utilization of digital filters in a statistical framework for seizure prediction. Finally, an automated Diabetic Retinopathy (DR) diagnosis approach is presented based on the segmentation and detection of anomalous objects from retinal images. The presented simulation results reveal the success of the proposed techniques towards automated medical diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Notes

  1. Statistics on Avoidable Blindness; The Initiative for the Elimination of Avoidable Blindness, Vision 2020, a Joint Program of the World Health Organization (WHO) and the International Agency for the Prevention of Blindness (IAPB). Retrieved May 25, 2016 from http://www.vision2020.org/main.cfm?type=WIBDIEBETIC.

References

  • Aarabi, A., Fazel-Rezai, R., & Aghakhani, Y. (2009). EEG seizure prediction measures and challenges. In Annual international conference of the IEEE on engineering in medicine and biology society, EMBC, 2009. pp. 1864–1867.

  • Aarabi, A., & He, B. (2012). A rule-based seizure prediction method for focal neocortical epilepsy. Clinical Neurophysiology 123, 1111–1122.

    Article  Google Scholar 

  • Abd El-Samie, F. E. (2011). Information security for automatic speaker identification (1st ed.). New York: Springer.

    Book  Google Scholar 

  • Albregtsen, F. (2008). Statistical texture measures computed from gray level matrices.Oslo: Image Processing Laboratory, Department of Informatics, University of Oslo.

    Google Scholar 

  • Alotaiby, T. N., Alshebeili, S. A., Alotaibi, F. M., & Alrshoud, S. R. (2017). Epileptic seizure prediction using CSP and IDA for scalp EEG signals. Computational Intelligence and Neuroscience. https://doi.org/10.1155/2017/1240323.

    Google Scholar 

  • Angurajsiva, J., & Vasanthi, S. (2014). Abnormality classification of diabetic macular EDEMA in retinal images. International Journal of Innovative Research in Science, Engineering and Technology, 3(Special Issue 1), 517–522.

    Google Scholar 

  • Archana, G., Avinaya, V., Keerthi, C., Shivaram, G., & Vasanthi, S. (2013). Abnormality detection and its severity classification in retinal images. International Journal of Research in Engineering & Advanced Technology, 1(1), .

  • Belhadj, S., Attia, A., Adnane, B. A., Ahmed-Foitih, Z., & Ahmed, A. T. (2016). A novel epileptic seizure detection using fast potential-based hierarchical agglomerative clustering based on EMD. International Journal of Computer Science and Network Security (IJCSNS), 16(5), 7.

    Google Scholar 

  • Chandrashekar, M. P. (2013). An approach for the detection of vascular abnormalities in diabeticretinopathy. International Journal of Data Mining Techniques and Applications, 2, 246–250.

    Google Scholar 

  • Chiang, H.-Y., Chang, N.-F., Chen, T.-C., Chen, H.-H., & Chen, L.-G. (2011). Seizure prediction based on classification of EEG synchronization patterns with on-line retraining and post-processing scheme. In Annual international conference of the IEEE on engineering in medicine and biology society, EMBC, pp. 7564–7569, 2011.

  • Chu, H., Chung, C. K., Jeong, W., & Cho, K. H. (2017). Predicting epileptic seizures from scalp EEG based on attractor state analysis. Computer Methods and Programs in Biomedicine, 143, 75–87.

    Article  Google Scholar 

  • Consul, S., Morshed, B. I., & Kozma, R. (2013). Hardware efficient seizure prediction algorithm. In Proceedings of the international society for optics and photonics on nanosensors, biosensors, and info-tech sensors and systems 2013, Vol. 8691, p. 86911J.

  • Elgohary, S., Eldawlatly, S., & Khalil, M. I. (2016). Epileptic seizure prediction using zero-crossings analysis of EEG wavelet detail coefficients. In IEEE conference on computational intelligence in bioinformatics and computational biology (CIBCB), 2016, pp. 1–6.

  • Gabor, A., Leach, R., & Dowla, F. (1996). Automated seizure detection using a self-organizing neural network. Electroencephalography and Clinical Neurophysiology, 99(3), 257–266.

    Article  Google Scholar 

  • Gadhoumi, K., Lina, J. M., & Gotman, J. (2013). Seizure prediction in patients with mesial temporal lobe epilepsy using EEG measures of state similarity. Clinical Neurophysiology, 124, 1745–1754.

    Article  Google Scholar 

  • Gebejes, A., Huertas, R. (2013). Texture characterization based on grey-level co-occurrence matrix. In International conference on information and communication technologies (ICTIC), March 2013.

  • Gotman, J. (1982). Automatic recognition of epileptic seizures in the EEG. Electroencephalography and Clinical Neurophysiology, 54(5), 530–540.

    Article  Google Scholar 

  • Hassan, H. H., & Goussev, S. (2011). Texture analysis of high resolution aeromagnetic data to identify geological features in the Horn River Basin NE British Columbia”, Recovery—2011 CSPG CSEG CWLS Convention.

  • Hung, S. H., Chao, C. F., Wang, S. K., Lin, B. S., Lin, C. T. (2010). VLSI implementation for epileptic seizure prediction system based on wavelet and chaos theory. In Proceedings of the IEEE TENCON, 2010.

  • Iasemidis, L. D., Shiau, D.-S., Chaovalitwongse, W., Sackellares, J. C., Pardalos, P. M., Principe, J. C., Carney, P. R., Prasad, A., Veeramani, B., & Tsakalis, K. (2003). Adaptive epileptic seizure prediction system. IEEE Transactions on Biomedical Engineering, 50(5), 616–627.

    Article  Google Scholar 

  • International Federation of Clinical Neurophysiology, Deuschl, G., & Eisen, A. (1999). Recommendations for the practice of clinical neurophysiology: Guidelines of the International Federation of Clinical Physiology. Amsterdam: Elsevier.

    Google Scholar 

  • Kaiser, J. F. (1966). Digital filters. In F. F. Kuo & J. F. Kaiser (Eds.), System Analysis by Digital Computer (Chap. 7, pp. 218–285). New York: Wiley.

    Google Scholar 

  • Khalid, M. I., et al. (2015). Online adaptive seizure prediction algorithm for scalp EEG. In IEEE International Conference on Information and Communication Technology Research, 2015.

  • Khan, Y. U., Rafiuddin, N., & Farooq, O. (2012). Automated seizure detection in scalp EEG using multiple wavelet scales. In IEEE international conference on signal processing, computing and control (ISPCC), 2012, pp. 1–5.

  • Kuo, S. M., Lee, B. H., Tian, W. (2006). Real-time digital signal processing, implementations and applications. Hoboken: Wiley.

    Book  Google Scholar 

  • Li, S., et al. (2013). Seizure prediction using spike rate of intracranial EEG. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 21(6), 880–886.

    Article  Google Scholar 

  • Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110.

    Article  Google Scholar 

  • Miri, M. R. & Nasrabadi, A. M. (2011). A new seizure prediction method based on return map. In Proceedings of the Iranian conference on biomedical engineering, 2011.

  • Myers, M. H., Padmanabha, A., Hossain, G., de Jongh Curry, A. L., & Blaha, C. D. (2016). Seizure prediction and detection via phase and amplitude lock values. Frontiers in Human Neuroscience, 10, 80.

    Article  Google Scholar 

  • Nasehi, S., & Pourghassem, H. (2013). Patient-specific epileptic seizure onset detection algorithm based on spectral features and ipsonn classifier. In IEEE international conference on communication systems and network technologies (CSNT), 2013 pp. 186–190.

  • Neubauer, A. S., Kernt, M., Haritoglou, C., Priglinger, S. G., Kampik, A., & Ulbig, M. W. (2007). Nonmydriatic screening for diabetic retinopathy by ultra-widefield scanning laser ophthalmoscopy (Optomap). Berlin: Springer-Verlag .

    Google Scholar 

  • Paranjpe, M. J. & Kakatkar, M. M. (2013). Automated diabetic retinopathy severity classification using support vector machine. International Journal for Research in Science & Advanced Technologies, 3(3), 86–91.

    Google Scholar 

  • Patwari, M. B., Manza, R. R., Rajput, Y. M., Deshpande, N. K., & Saswade, M. (2013). Extraction of the retinal blood vessels and detection of the bifurcation points. International Journal of Computer Applications, 77(2), 29–34.

    Article  Google Scholar 

  • Pezarv, M., & Paul, M. (2015). Epileptic seizure prediction by exploiting spatiotemporal relationship of EEG signals using phase correlation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 10(1109), 2458982.

    Google Scholar 

  • Premaratne, P., Ajaz, S., Monaragala, R., Bandara, N., & Premaratne, M. (2010) Design and implementation of edge detection algorithm in dsPIC embedded processor. In Proceedings of the 5th international conference on information and automation for sustainability, Sri Lanka, pp. 17–19, 2010.

  • Priya, R., & Aruna, P. (2013). Diagnose of diabetic retinopathy using machine learning techniques. ICTACT Journal On Soft Computing, 3(4), 563–575.

    Google Scholar 

  • Qi, Y., Wang, Y., Zheng, X., Zhang, J., Zhu, J., Guo, J. (2012). Efficient epileptic seizure detection by a combined imf-voe feature. In Proceedings of the international conference of the IEEE EMBS, 2012.

  • Saluja, K., & Mittal, D. (2014). Detection of exudates and optic disc by mathematical morphology from retinal images. International Journal of Research in Electronics and Computer Engineering (IJRECE), 2(1), 29–32.

    Google Scholar 

  • Shanmugavadivu, P., & Balasubramanian, K. (2010). Image inversion and bi level histogram equalization for contrast enhancement. International Journal of Computer Applications, 1(15), 61–65.

    Article  Google Scholar 

  • Sekhar, S., El-Samie, A., Yu, F. E., Al-Nuaimy, P., W., & Nandi, A. K. (2011). Automated localization of retinal features. Applied Optics, 50(19), 3064–3075. https://doi.org/10.1364/ao.50.003064.

    Article  Google Scholar 

  • Shoeb, A. H. (2009). Application of machine learning to epileptic seizure onset detection and treatment. Ph.D. dissertation, Massachusetts Institute of Technology.

  • Thodoroff, P., Pineau, J., & Lim, A. (2016). Learning robust features using deep learning for automatic seizure detection. In Machine learning for healthcare conference, 2016, pp. 178–190.

  • Vallabha, D., Dorairaj, R., Namuduri, K. (2004). Automated detection and classification of vascular abnormalities in diabetic retinopathy. In 38th Asilomar conference on signals, systems & computers, Vol. 2, 2004.

  • Vidyaratne, L. S., & Iftekharuddin, K. M. (2017). Real-time epileptic seizure detection using eeg. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(11), 2146–2156.

    Article  Google Scholar 

  • Vohra, R., Tayal, A. (2011). Image restoration using thresholding techniques on wavelet coefficients. IJCSI International Journal of Computer Science Issues, 8(5), 3.

    Google Scholar 

  • Wang, S., Chaovalitwongse, W. A., Wong, S. (2010). A novel reinforcement learning framework for online adaptive seizure prediction. In Proceedings of the IEEE international conference on bioinformatics and biomedicine, 2010

  • Williamson, J. R., Bliss, D. W., Browne, D. W., & Narayanan, J. T. (2012). Seizure prediction using EEG spatiotemporal correlation structure. Epilepsy & Behavior, 25, 230–238.

    Article  Google Scholar 

  • Xie, S., Krishnan, S. (2011). Signal decomposition by multi-scale PCA and its applications to long-term EEG signal classification. In Proceedings of the IEEE international conference on complex medical engineering, 2011

  • Zohra, B. F., & Mohamed, B. (2009). Automated diagnosis of retinal images using the Support Vector Machine (SVM). Algerie: Faculty of Science. Department of Information, USTO.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Sedik.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedik, A., Emara, H.M., Hamad, A. et al. Efficient anomaly detection from medical signals and images. Int J Speech Technol 22, 739–767 (2019). https://doi.org/10.1007/s10772-019-09610-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10772-019-09610-z

Keywords

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy