Abstract
In this paper, we consider a nonlinear enzyme-catalytic dynamical system with uncertain system parameters and state-delays for describing the process of batch culture. Some important properties of the time-delay system are discussed. Taking account of the difficulty in accurately measuring the concentrations of intracellular substances and the absence of equilibrium points for the time-delay system, we define quantitatively biological robustness of the intracellular substance concentrations for the entire process of batch culture to identify the uncertain system parameters and state-delays. Taking the defined biological robustness as a cost function, we establish an identification model subject to the time-delay system, continuous state inequality constraints and parameter constraints. By a penalty approach, this model can be converted into a sequence of nonlinear programming submodels. In consideration of both the difficulty in finding analytical solutions and the complexity of numerical solution to the nonlinear system, based on an improved simulated annealing, we develop a parallelized synchronous algorithm to solve these nonlinear programming submodels. An illustrative numerical example shows the appropriateness of the optimal system parameters and state-delays as well as the validity of the parallel algorithm.




Similar content being viewed by others
References
Richard, J.P.: Time-delay systems: an overview of some recent advances and open problems. Automatica 39(10), 1667–1694 (2003)
Denis-Vidal, L., Jauberthie, C., Joly-Blanchard, G.: Identifiability of a nonlinear delayed-differential aerospace model. IEEE Trans. Autom. Control 51(1), 154–158 (2006)
Chai, Q.Q., Loxton, R., Teo, K.L., Yang, C.: A class of optimal state-delay control problems. Nonlinear Anal Real 14(3), 1536–1550 (2013)
Anguelova, M., Wennberg, B.: State elimination and identifiability of the delay parameter for nonlinear time-delay systems. Automatica 44(5), 1373–1378 (2008)
Loxton, R., Teo, K.L., Volker, R.: An optimization approach to state-delay identification. IEEE Tras. Autom. Control 55(9), 2113–2119 (2010)
Witt, U., Miiller, R.J., Augusta, J., Widdecke, H., Deckwer, W.D.: Synthesis, properties and biodegradability of polyesters based on 1,3-propanediol. Macromol. Chem. Phys. 195(2), 793–802 (1994)
Menzel, K., Zeng, A.P., Deckwer, W.D.: High concentration and productivity of 1,3-propanediol from continuous fermentation of glycerol by Klebsiella pneumoniae. Enzyme Microb. Technol. 20(2), 82–86 (1997)
Ashoori, A., Moshiri, B., Sedigh, A.K., Bakhtiari, M.R.: Optimal control of a nonlinear fed-batch fermentation process using model predictive approach. J. Process Control 19(7), 1162–1173 (2009)
Wang, G., Feng, E.M., Xiu, Z.L.: Modeling and parameter identification of microbial bioconversion in fed-batch cultures. J. Process Control 18(5), 458–464 (2008)
Ye, J.X., Feng, E.M., Lian, H.S., Xiu, Z.L.: Existence of equilibrium points and stability of the nonlinear dynamical system in microbial continuous cultures. Appl. Math. Comput. 207(2), 307–318 (2009)
Gtinzel, B.: Mikrobielle Herstellung Von 1,3-Propandiol Durch Clostridium Butyricum und Adsorptive abtremutng von diolen. TU Braunschweig, Germany (1991)
Yuan, J.L., Zhang, X., Zhu, X., Yin, H.C., Feng, E.M., Xiu, Z.L.: Identification and robustness analysis of nonlinear multi-stage enzyme-catalytic dynamical system in batch culture. Comp. Appl. Math. (2014). doi:10.1007/s40314-014-0160-9
Jiang, Z.G., Yuan, J.L., Feng, E.M.: Robust identification and its properties of nonlinear bilevel multi-stage dynamic system. Appl. Math. Comput. 219(12), 6979–6985 (2013)
Wang, J., Ye, J.X., Yin, H.C., Feng, E.M., Wang, L.: Sensitivity analysis and identification of kinetic parameters in batch fermentation of glycerol. J. Comput. Appl. Math. 236(9), 2268–2276 (2012)
Yuan, J.L., Zhu, X., Zhang, X., Yin, H.C., Feng, E.M., Xiu, Z.L.: Robust identification of enzymatic nonlinear dynamical systems for 1, 3-propanediol transport mechanisms in microbial batch culture. Appl. Math. Comput. 232, 150–163 (2014)
Wang, L., Feng, E.M., Xiu, Z.L.: Modeling nonlinear stochastic kinetic system and stochastic optimal control of microbial bioconversion process in batch culture. Nonlinear Anal. Model. 18(1), 99–111 (2013)
Yuan, J.L., Zhang, X., Zhu, X., Yin, H.C., Feng, E.M., Xiu, Z.L.: Modelling and pathway identification involving the transport mechanism of a complex metabolic system in batch culture. Commun. Nonlinear Sci. Numer. Simul. 19(16), 2088–2103 (2014)
Zhu, X., Feng, E.M.: Joint estimation in batch culture by using unscented kalman filter. Biotechnol. Bioprocess Eng. 17(6), 1238–1243 (2012)
Liu, C.Y.: Modelling and parameter identification for a nonlinear time-delay system in microbial batch fermentation. Appl. Math. Model. 37(10–11), 6899–6908 (2013)
Kitano, H.: Biological robustness. Nat. Rev. Genet. 5(11), 826–837 (2004)
Kitano, H.: Violations of robustness trade-offs. Mol. Syst. Biol. 6, (Article ID 384)(2010). doi:10.1038/msb.2010.40
Stelling, J., Sauer, U., Szallasi, Z., Doyle, F.J., Doyle, J.: Robustness of cellular functions. Cell 118(6), 675–685 (2004)
Perc, M., Marhl, M.: Sensitivity and flexibility of regular and chaotic calcium oscillations. Biophys. Chem. 104(2), 509–522 (2003)
Perc, M., Marhl, M.: Noise enhances robustness of intracellular \(Ca^{2+}\) oscillations. Phys. Lett. A. 316(5), 304–310 (2003)
Barkai, N., Leibler, S.: Robustness in simple biochemical networks. Nature 387(6636), 913–917 (1997)
Kitano, H.: Towards a theory of biological robustness. Mol. Syst. Biol. 3, (Article ID 137)(2007)
Alon, U., Surette, M.G., Barkai, N., Leibler, S.: Robustness in bacterial chemotaxis. Nature 397(6715), 168–171 (1999)
Callaway, D.S., Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Network, robustness and fragility: percolation on random graphs. Phys. Rev. Lett. 85(25), 5468–5471 (2000)
Zhang, Y.D., Feng, E.M., Xiu, Z.L.: Robust analysis of hybrid dynamical systems for 1,3-propanediol transport mechanisms in microbial continuous fermentation. Math. Comput. Model. 54(11–12), 3164–3171 (2011)
Yan, H.H., Zhang, X., Ye, J.X., Feng, E.M.: Identification and robustness analysis of nonlinear hybrid dynamical system concerning glycerol transport mechanism. Comput. Chem. Eng. 40, 171–180 (2012)
Gao, Y., Lygeros, J., Quincampoix, M.: On the reachability problem for uncertain hybrid systems. IEEE Trans. Autom. Control 52(9), 1572–1586 (2007)
Gao, Y., Lygeros, J., Quincampoix, M., Seube, N.: On the control of uncertain impulsive systems: approximate stabilization and controlled invariance. Int. J. Control 77(16), 1393–1407 (2004)
Sun, Y.Q., Qi, W.T., Teng, H., Xiu, Z.L., Zeng, A.P.: Mathematica modeling of glycerol fermentation by Klebsiella pneumoniae: concerning enzyme-catalytic reductive pathway and transport of glycerol and 1,3-propanediol across cell membrane. Biochem. Eng. J. 38, 22–32 (2008)
Lin, Q., Loxton, R., Teo, K.L.: The control parameterization method for nonlinear optimal control: a survey. J. Ind. Manag. Optim. 10(1), 275–309 (2014)
Lin, Q., Loxton, R., Teo, K.L., Wu, Y.H., Yu, C.J.: A new exact penalty method for semi-infinite programming problems. J. Comput. Appl. Math. 261, 271–286 (2014)
Wang, L.: Determining the transport mechanism of an enzyme-catalytic complex metabolic network based on biological robustness. Bioprocess Biosyst. Eng. 36(4), 433–441 (2013)
Wang L.: Modelling and Regularity of nonlinear impulsive switching dynamical system in fed-batch culture. Abstr. Appl. Anal. 15 (2012) [Article ID 295627]. doi:10.1155/2012/295627
Polak, E.: Optimization algorithms and consistent approximations. Springer, New York (1997)
Ahonen, H., de Alvarenga, A.G., Amaral, A.R.S.: Simulated annealing and tabu search approaches for the corridor allocation problem. Eur. J. Oper. Res. 232(1), 221–233 (2014)
Aarts, E., Jan, K., Wil, M.: Simulated annealing. Search methodologies. Springer, Berlin (2005)
Romeijn, H.E., Robert, L.S.: Simulated annealing for constrained global optimization. J. Global Optim. 5(2), 101–126 (1994)
Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)
Koakutsu, S., Sugai, Y., Hirata, H.: Block placement by improved simulated annealing based on genetic algorithm. Syst. Model. Optim. 180, 648–656 (1992)
Ishibuchi, H., Misaki, S., Tanaka, H.: Modified simulated annealing algorithms for the flow shop sequencing problem. Eur. J. Oper. Res. 81(2), 388–398 (1995)
Onbasoǧlu, E., Özdamar, L.: Parallel simulated annealing algorithms in global optimization. J. Global Optim. 19(1), 27–50 (2001)
Ferreiro, A.M., García, J.A., López-Salas, J.G., Vázquez, C.: An efficient implementation of parallel simulated annealing algorithm in GPUs. J. Global Optim. 57(3), 863–890 (2013)
Czapiński, M.: Parallel Simulated Annealing with Genetic Enhancement for flowshop problem with \(C_{sum}\). Comput. Ind. Eng. 59(4), 778–785 (2010)
Goberna, M.A., López, M.A.: Semi-infinite Programming Recent Advances. Kluwer, Dordrecht (2001)
Ellermeyer, A., Hendrix, J., Ghoochan, N.: A theoretical and empirical investigation of delayed growth response in the continuous culture of bacteria. J. Theor. Biol. 222(4), 485–494 (2003)
Hale, J.K., Verduyn Lunel, S.M.: Introduction to Functional Differential Equations. Springer, Berlin (1993)
Chai, Q.Q., Loxton, R., Teo, K.L., Yang, C.H.: A unified parameter identification method for nonlinear time-delay systems. J. Ind. Manag. Optim. 9(2), 471–486 (2013)
Nocedal, J., Wright, S.J.: Numerical optimization. Springer, New York (1999)
Acknowledgments
This work was supported by the National Natural Science Foundation of China (Grant Nos. 11171050, 11101262 and 11371164), the National Natural Science Foundation for the Youth of China (Grant Nos. 11301051, 11301081 and 11401073) and Provincial Natural Science Foundation of Fujian (Grant Nos. 2014J05001).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yuan, J., Wang, L., Zhang, X. et al. Parameter identification for a nonlinear enzyme-catalytic dynamic system with time-delays. J Glob Optim 62, 791–810 (2015). https://doi.org/10.1007/s10898-014-0245-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10898-014-0245-4