Abstract
We introduce and analyze a discontinuous Galerkin method for the numerical discretization of a stationary incompressible magnetohydrodynamics model problem. The fluid unknowns are discretized with inf-sup stable discontinuous ℘ 3 k −℘ k−1 elements whereas the magnetic part of the equations is approximated by discontinuous ℘ 3 k −℘ k+1 elements. We carry out a complete a-priori error analysis of the method and prove that the energy norm error is convergent of order k in the mesh size. These results are verified in a series of numerical experiments.
Similar content being viewed by others
References
Amestoy, P.R., Duff, I.S., L’Excellent, J.-Y.: Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184, 501–520 (2000)
Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21, 823–864 (1998)
Armero, F., Simo, J.C.: Long-term dissipativity of time-stepping algorithms for an abstract evolution equation with applications to the incompressible MHD and Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 131, 41–90 (1996)
Arnold, D.N., Brezzi, F., Cockburn, B., Marini, L.D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2001)
Balay, S., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc Web page (2001). http://www.mcs.anl.gov/petsc
Brenner, S.C.: Poincaré-Friedrichs inequalities for piecewise H 1-functions. SIAM J. Numer. Anal. 41, 306–324 (2003)
Brezzi, F., Fortin, M.: Mixed and hybrid finite element methods. In: Springer Series in Computational Mathematics, vol. 15. Springer, New York (1991)
Cockburn, B., Shu, C.-W.: Runge–Kutta discontinuous Galerkin methods for convection–dominated problems. J. Sci. Comput. 16, 173–261 (2001)
Cockburn, B., Karniadakis, G.E., Shu, C.-W. (eds.): Discontinuous Galerkin Methods. Theory, Computation and Applications. Lect. Notes Comput. Sci. Eng., vol. 11. Springer, New York (2000)
Cockburn, B., Kanschat, G., Schötzau, D.: Local discontinuous Galerkin methods for the Oseen equations. Math. Comput. 73, 569–593 (2004)
Cockburn, B., Kanschat, G., Schötzau, D.: A locally conservative LDG method for the incompressible Navier-Stokes equations. Math. Comput. 74, 1067–1095 (2005)
Cockburn, B., Kanschat, G., Schötzau, D.: A note on discontinuous Galerkin divergence-free solutions of the Navier-Stokes equations. J. Sci. Comput. 31, 61–73 (2007)
Costabel, M., Dauge, M.: Weighted regularization of Maxwell equations in polyhedral domains. Numer. Math. 93, 239–277 (2002)
Dauge, M.: Stationary Stokes and Navier–Stokes systems on two- or three-dimensional domains with corners. Part I: Linearized equations. SIAM J. Math. Anal. 20, 74–97 (1989)
Gerbeau, J.-F.: Problèmes mathématiques et numériques posés par la modélisation de l’électrolyse de l’aluminium. Ph.D. thesis, Ecole Nationale des Ponts et Chaussées (1998)
Gerbeau, J.-F.: A stabilized finite element method for the incompressible magnetohydrodynamic equations. Numer. Math. 87, 83–111 (2000)
Gerbeau, J.-F., Le Bris, C., Lelièvre, T.: Mathematical Methods for the Magnetohydrodynamics of Liquid Metals. Numerical Mathematics and Scientific Computation. Oxford University Press, New York (2006)
Giani, S., Hall, E., Houston, P.: AptoFEM Users Manual. Technical report, University of Nottingham (in preparation)
Guermond, J.-L., Minev, P.: Mixed finite element approximation of an MHD problem involving conducting and insulating regions: the 3D case. Numer. Methods Partial Differ. Equ. 19, 709–731 (2003)
Gunzburger, M.D., Meir, A.J., Peterson, J.S.: On the existence and uniqueness and finite element approximation of solutions of the equations of stationary incompressible magnetohydrodynamics. Math. Comput. 56, 523–563 (1991)
Hansbo, P., Larson, M.G.: Discontinuous Galerkin methods for incompressible and nearly incompressible elasticity by Nitsche’s method. Comput. Methods Appl. Mech. Eng. 191, 1895–1908 (2002)
Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Texts in Applied Mathematics, vol. 54. Springer, New York (2008)
Houston, P., Perugia, I., Schötzau, D.: Mixed discontinuous Galerkin approximation of the Maxwell operator. SIAM J. Numer. Anal. 42, 434–459 (2004)
Houston, P., Perugia, I., Schötzau, D.: Mixed discontinuous Galerkin approximation of the Maxwell operator: Non-stabilized formulation. J. Sci. Comput. 22, 315–346 (2005)
Houston, P., Perugia, I., Schötzau, D.: Mixed discontinuous Galerkin approximation of the Maxwell operator: The indefinite case. Math. Model. Numer. Anal. 39, 727–754 (2005)
Li, F., Shu, C.-W.: Locally divergence-free discontinuous Galerkin methods for MHD equations. J. Sci. Comput. 22–23, 413–442 (2005)
Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford University Press, New York (2003)
Nédélec, J.C.: Mixed finite element in ℝ3. Numer. Math. 50, 57–81 (1980)
Schenk, O., Gärtner, K.: Solving unsymmetric sparse systems of linear equations with PARDISO. J. Future Gener. Comput. Syst. 20, 475–487 (2004)
Schötzau, D.: Mixed finite element methods for incompressible magneto-hydrodynamics. Numer. Math. 96, 771–800 (2004)
Schötzau, D., Schwab, C., Toselli, A.: Mixed hp-DGFEM for incompressible flows. SIAM J. Numer. Anal. 40, 2171–2194 (2003)
Warburton, T.C., Karniadakis, G.E.: A discontinuous Galerkin method for the viscous MHD equations. J. Comput. Phys. 152, 608–641 (1999)
Author information
Authors and Affiliations
Corresponding author
Additional information
D. Schötzau and X. Wei were supported in part by the Natural Sciences and Engineering Research Counsil of Canada (NSERC).
Rights and permissions
About this article
Cite this article
Houston, P., Schötzau, D. & Wei, X. A Mixed DG Method for Linearized Incompressible Magnetohydrodynamics. J Sci Comput 40, 281–314 (2009). https://doi.org/10.1007/s10915-008-9265-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-008-9265-x