Abstract
In this paper, we study fast iterative solvers for the solution of fourth order parabolic equations discretized by mixed finite element methods. We propose to use consistent mass matrix in the discretization and use lumped mass matrix to construct efficient preconditioners. We provide eigenvalue analysis for the preconditioned system and estimate the convergence rate of the preconditioned GMRes method. Furthermore, we show that these preconditioners only need to be solved inexactly by optimal multigrid algorithms. Our numerical examples indicate that the proposed preconditioners are very efficient and robust with respect to both discretization parameters and diffusion coefficients. We also investigate the performance of multigrid algorithms with either collective smoothers or distributive smoothers when solving the preconditioner systems.


Similar content being viewed by others
References
Asaro, R.J., Tiller, W.A.: Interface morphology development during stress corrosion cracking: part I. Via surface diffusion. Metall. Trans. 3(7), 1789–1796 (1972)
Axelsson, O., Boyanova, P., Kronbichler, M., Neytcheva, M., Wu, X.: Numerical and computational efficiency of solvers for two-phase problems. Comput. Math. Appl. 65(3), 301–314 (2013)
Axelsson, O., Neytcheva, M.: Operator splitting for solving nonlinear, coupled multiphysics problems with application to numerical solution of an interface problem. TR2011-009 Institute for Information Technology, Uppsala University (2011)
Bai, Z.-Z., Benzi, M., Chen, F., Wang, Z.-Q.: Preconditioned MHSS iteration methods for a class of block two-by-two linear systems with applications to distributed control problems. IMA J. Numer. Anal. 33(1), 343–369 (2013)
Bai, Z.-Z., Chen, F., Wang, Z.-Q.: Additive block diagonal preconditioning for block two-by-two linear systems of skew-Hamiltonian coefficient matrices. Numer. Algorithms 62(4), 655–675 (2013)
Bai, Z.-Z., Golub, G.H., Ng, M.K.: Hermitian and skew-Hermitian splitting methods for non-Hermitian positive definite linear systems. SIAM J. Matrix Anal. Appl. 24(3), 603–626 (2003)
Baňas, L., Nürnberg, R.: A multigrid method for the Cahn–Hilliard equation with obstacle potential. Appl. Math. Comput. 213(2), 290–303 (2009)
Bänsch, E., Morin, P., Nochetto, R.H.: Surface diffusion of graphs: variational formulation, error analysis, and simulation. SIAM J. Numer. Anal. 42(2), 773–799 (2004)
Bänsch, E., Morin, P., Nochetto, R.H.: A finite element method for surface diffusion: the parametric case. J. Comput. Phys. 203(1), 321–343 (2005)
Bänsch, E., Morin, P., Nochetto, R.H.: Preconditioning a class of fourth order problems by operator splitting. Numer. Math. 118(2), 197–228 (2011)
Barrett, J.W., Blowey, J.F., Garcke, H.: Finite element approximation of the Cahn–Hilliard equation with degenerate mobility. SIAM J. Numer. Anal. 37(1), 286–318 (1999)
Benzi, M., Golub, G.H.: A preconditioner for generalized saddle point problems. SIAM J. Matrix Anal. Appl. 26(1), 20–41 (2004)
Bertozzi, A.L., Esedoglu, S., Gillette, A.: Inpainting of binary images using the Cahn–Hilliard equation. IEEE Trans. Image Process. 16(1), 285–291 (2007)
Blowey, J.F., Elliott, C.M.: The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy part I: mathematical analysis. Eur. J. Appl. Math. 2(3), 233–280 (1991)
Blowey, J.F., Elliott, C.M.: The Cahn–Hilliard gradient theory for phase separation with non-smooth free energy. Part II: numerical analysis. Eur. J. Appl. Math. 3, 147–179 (1992)
Bosch, J., Kay, D., Stoll, M., Wathen, A.J.: Fast solvers for Cahn–Hilliard inpainting. SIAM J. Imaging Sci. 7(1), 67–97 (2014)
Bosch, J., Stoll, M., Benner, P.: Fast solution of Cahn–Hilliard variational inequalities using implicit time discretization and finite elements. J. Comput. Phys. 262, 38–57 (2014)
Boyanova, P., Do-Quang, M., Neytcheva, M.: Efficient preconditioners for large scale binary Cahn–Hilliard models. Comput. Methods Appl. Math. 12(1), 1–22 (2012)
Boyanova, P., Neytcheva, M.: Efficient numerical solution of discrete multi-component Cahn–Hilliard systems. Comput. Math. Appl. 67(1), 106–121 (2014)
Brandt, A., Dinar, N.: Multi-grid solutions to elliptic flow problems. Numerical Methods for Partial Differential Equations, pp. 53–147 (1979)
Brenner, S.C., Scott, R.: The Mathematical Theory of Finite Element Methods, vol. 15. Springer, Berlin (2008)
Cahn, J.W., Hilliard, J.E.: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28(2), 258–267 (2004)
Chen, C.M., Thomée, V.: The lumped mass finite element method for a parabolic problem. J. Aust. Math. Soc. Ser. B Appl. Math. 26(03), 329–354 (1985)
Chen, L.: iFEM: an integrated finite element methods package in MATLAB. Technical Report, University of California at Irvine (2009)
Chen, L.: Multigrid methods for constrained minimization problems and application to saddle point problems. Submitted (2014)
Chen, L.: Multigrid methods for saddle point systems using constrained smoothers. Comput. Math. Appl. 70(12), 2854–2866 (2015)
Choo, S.M., Lee, Y.J.: A discontinuous Galerkin method for the Cahn–Hilliard equation. J. Appl. Math. Comput. 18(1–2), 113–126 (2005)
Christon, M.A.: The influence of the mass matrix on the dispersive nature of the semi-discrete, second-order wave equation. Comput. Methods Appl. Mech. Eng. 173(1), 147–166 (1999)
Du, Q., Nicolaides, R.A.: Numerical analysis of a continuum model of phase transition. SIAM J. Numer. Anal. 28(5), 1310–1322 (1991)
Elliott, C.M.: The Cahn–Hilliard model for the kinetics of phase separation. In: Rodrigues, J.F. (ed.) Mathematical Models for Phase Change Problems, pp. 35–73. Springer (1989)
Elliott, C.M., French, D.A.: Numerical studies of the Cahn–Hilliard equation for phase separation. IMA J. Appl. Math. 38(2), 97–128 (1987)
Elliott, C.M., French, D.A.: A nonconforming finite-element method for the two-dimensional Cahn–Hilliard equation. SIAM J. Numer. Anal. 26(4), 884–903 (1989)
Elliott, C.M., French, D.A., Milner, F.A.: A second order splitting method for the Cahn–Hilliard equation. Numer. Math. 54(5), 575–590 (1989)
Elliott, C.M., Larsson, S.: Error estimates with smooth and nonsmooth data for a finite element method for the Cahn–Hilliard equation. Math. Comput. 58(198), 603–630 (1992)
Feng, X., Karakashian, O.: Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn–Hilliard equation of phase transition. Math. Comput. 76(259), 1093–1117 (2007)
Feng, X., Prohl, A.: Error analysis of a mixed finite element method for the Cahn–Hilliard equation. Numer. Math. 99(1), 47–84 (2004)
Feng, X., Prohl, A.: Numerical analysis of the Cahn–Hilliard equation and approximation for the Hele–Shaw problem. J. Comput. Math. 26(6), 767–796 (2008)
Fried, I.: Bounds on the spectral and maximum norms of the finite element stiffness, flexibility and mass matrices. Int. J. Solids Struct. 9(9), 1013–1034 (1973)
Furihata, D.: A stable and conservative finite difference scheme for the Cahn–Hilliard equation. Numer. Math. 87(4), 675–699 (2001)
Gaspar, F.J., Lisbona, F.J., Oosterlee, C.W., Wienands, R.: A systematic comparison of coupled and distributive smoothing in multigrid for the poroelasticity system. Numer. Linear Algebra Appl. 11(2–3), 93–113 (2004)
Gräser, C., Kornhuber, R.: On preconditioned Uzawa-type iterations for a saddle point problem with inequality constraints. In: Widlund, O.B., Keyes, D.E. (eds.) Domain Decomposition Methods in Science and Engineering XVI, Volume 55 of Lecture Notes in Computational Science Engineering, pp. 91–102. Springer, Berlin (2007)
Greer, J.B., Bertozzi, A.L.: \({H}^{1}\) solutions of a class of fourth order nonlinear equations for image processing. Discrete Contin. Dyn. Syst. 10(1/2), 349–366 (2004)
Gresho, P.M., Lee, R.L., Sani, R.L.: Advection-dominated flows, with emphasis on the consequences of mass lumping. Finite Elem. Fluids 1, 335–350 (1978)
He, Y., Liu, Y.: Stability and convergence of the spectral Galerkin method for the Cahn–Hilliard equation. Numer. Methods Partial Differ. Equ. 24(6), 1485–1500 (2008)
Henn, S.: A multigrid method for a fourth-order diffusion equation with application to image processing. SIAM J. Sci. Comput. 27(3), 831–849 (2005)
Hinton, E., Rock, T., Zienkiewicz, O.C.: A note on mass lumping and related processes in the finite element method. Earthq. Eng. Struct. Dyn. 4(3), 245–249 (1976)
Kay, D., Welford, R.: A multigrid finite element solver for the Cahn–Hilliard equation. J. Comput. Phys. 212(1), 288–304 (2006)
Kim, J., Kang, K., Lowengrub, J.: Conservative multigrid methods for Cahn–Hilliard fluids. J. Comput. Phys. 193(2), 511–543 (2004)
King, B.B., Stein, O., Winkler, M.: A fourth-order parabolic equation modeling epitaxial thin film growth. J. Math. Anal. Appl. 286(2), 459–490 (2003)
Lass, O., Vallejos, M., Borzi, A., Douglas, C.C.: Implementation and analysis of multigrid schemes with finite elements for elliptic optimal control problems. Computing 84(1–2), 27–48 (2009)
Mullen, R., Belytschko, T.: Dispersion analysis of finite element semidiscretizations of the two-dimensional wave equation. Int. J. Numer. Methods Eng. 18(1), 11–29 (1982)
Niclasen, D.A., Blackburn, H.M.: A comparison of mass lumping techniques for the two-dimensional Navier–Stokes equations.pdf. In: Twelfth Australasian Fluid Mechanics Conference, pp. 731–734. The Univesity of Sydney (1995)
Olshanskii, M.A., Reusken, A.: Navier–Stokes equations in rotation form: a robust multigrid solver for the velocity problem. SIAM J. Sci. Comput. 23(5), 1683–1706 (2002)
Quarteroni, A.: On mixed methods for fourth-order problems. Comput. Methods Appl. Mech. Eng. 24(1), 13–34 (1980)
Schöberl, J.: Multigrid methods for a parameter dependent problem in primal variables. Numer. Math. 84, 97–119 (1999)
Sun, Z.: A second-order accurate linearized difference scheme for the two-dimensional Cahn–Hilliard equation. Math. Comput. 64(212), 1463–1471 (1995)
Takacs, S., Zulehner, W.: Convergence analysis of multigrid methods with collective point smoothers for optimal control problems. Comput. Vis. Sci. 14(3), 131–141 (2011)
Trefethen, L.N., Embree, M.: Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton Univeristy Press, Princeton (2005)
Ushijima, T.: On the uniform convergence for the lumped mass approximation of the heat equation. J. Fac. Sci. Univ. Tokyo 24, 477–490 (1977)
Ushijima, T.: Error estimates for the lumped mass approximation of the heat equation. Mem. Numer. Math. 6, 65–82 (1979)
Vanka, S.P.: Block-implicit multigrid solution of Navier–Stokes equations in primitive variables. J. Comput. Phys. 65, 138–158 (1986)
Wang, M., Chen, L.: Multigrid methods for the stokes equations using distributive Gauss–Seidel relaxations based on the least squares commutator. J. Sci. Comput. 56(2), 409–431 (2013)
Wise, S., Kim, J., Lowengrub, J.: Solving the regularized, strongly anisotropic Cahn–Hilliard equation by an adaptive nonlinear multigrid method. J. Comput. Phys. 226(1), 414–446 (2007)
Wittum, G.: Multigrid methods for Stokes and Navier–Stokes eqautions with transforming smoothers: algorithms and numerical results. Numer. Math. 54(5), 543–563 (1989)
Xia, Y., Xu, Y., Shu, C.W.: Local discontinuous Galerkin methods for the Cahn–Hilliard type equations. J. Comput. Phys. 227(1), 472–491 (2007)
Ye, X., Cheng, X.: The Fourier spectral method for the Cahn–Hilliard equations. Numer. Math. 171(1), 345–357 (2005)
Zhang, S., Wang, M.: A nonconforming finite element method for the Cahn–Hilliard equation. J. Comput. Phys. 229(19), 7361–7372 (2010)
Acknowledgments
B. Zheng would like to acknowledge the support by NSF Grant DMS-0807811 and a Laboratory Directed Research and Development (LDRD) Program from Pacific Northwest National Laboratory. L.P. Chen was supported by the National Natural Science Foundation of China under Grant No. 11501473. L. Chen was supported by NSF Grant DMS-1418934 and in part by NIH Grant P50GM76516. R.H. Nochetto was supported by NSF under Grants DMS-1109325 and DMS-1411808. J. Xu was supported by NSF Grant DMS-1522615 and in part by US Department of Energy Grant DE-SC0014400. Computations were performed using the computational resources of Pacific Northwest National Laboratory (PNNL) Institutional Computing cluster systems. The PNNL is operated by Battelle for the US Department of Energy under Contract DE-AC05-76RL01830.
Author information
Authors and Affiliations
Corresponding author
About this article
Cite this article
Zheng, B., Chen, L., Hu, X. et al. Fast Multilevel Solvers for a Class of Discrete Fourth Order Parabolic Problems. J Sci Comput 69, 201–226 (2016). https://doi.org/10.1007/s10915-016-0189-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10915-016-0189-6