Skip to main content
Log in

Two-Level Additive Schwarz Methods for Discontinuous Galerkin Approximations of the Biharmonic Equation

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We present some two-level non-overlapping and overlapping additive Schwarz methods for discontinuous Galerkin methods for the biharmonic equation. It is shown that the condition numbers of the preconditioned systems are of the order \(O\left( \left( \frac{H}{h}\right) ^3\right) \) for the non-overlapping method, and of the order \(O\left( \frac{H}{h}+\left( \frac{H}{\delta }\right) ^3\right) \) for the overlapping method, where h and H stand for the fine and coarse mesh sizes respectively, and \(\delta \) denotes the size of the overlaps between subdomains. In particular, emphasis is placed on studying the influence of the penalty parameters and the choice of the coarse mesh bilinear form on the condition numbers. Numerical experiments are provided to gauge the efficiency of the methods and to validate the theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baker, G.A.: Finite element methods for elliptic equations using nonconforming elements. Math. Comput. 31, 44–59 (1977)

    MathSciNet  Google Scholar 

  4. Brenner, S.C.: Two-level additive Schwarz preconditioners for nonconforming finite element methods. Math. Comput. 65(215), 897–921 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brenner, S.C.: Poincaré–Friedrichs inequalities for piecewise \(H^1\) functions. SIAM J. Numer. Anal. 41, 306–324 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brenner, S.C., Sung, L.Y.: \(C^0\) interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. J. Sci. Comput. 22(1–3), 83–118 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brenner, S.C., Wang, K.: Two-level additive Schwarz preconditioners for \(C^0\) interior penalty methods. Numer. Math. 102, 231–255 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Brenner, S.C., Owens, L., Sung, L.Y.: A weakly over-penalized symmetric interior penalty method. Electron. Trans. Numer. Anal. 30, 107–127 (2008)

    MathSciNet  MATH  Google Scholar 

  9. Brenner, S.C., Scott, L.R.: The Mathematical Theory of Finite Element Methods. Springer, New York (2008)

    Book  MATH  Google Scholar 

  10. Brenner, S.C., Gudi, T., Sung, L.Y.: A weakly over-penalized symmetric interior penalty method for the biharmonic problem. Electron. Trans. Numer. Anal. 37, 214–238 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)

    Book  MATH  Google Scholar 

  12. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

  13. Davis, T.: Direct Methods for Sparse Linear Systems. SIAM, Philadelphia (2006)

    Book  MATH  Google Scholar 

  14. Douglas Jr., J., Dupont, T., Percell, P., Scott, R.: A family of \(C^1\) finite elements with optimal approximation properties for various Galerkin methods for 2nd and 4th order problems. RAIRO Anal. Numér. 13(3), 227–255 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dryja, M., Widlund, O.B.: Towards a unified theory of domain decomposition algorithms for elliptic problems. In: Chan, T. (ed.) Proc. Differ. Equ., pp. 3–21. SIAM, Philadelphia (1990)

    Google Scholar 

  16. Feng, X., Karakashian, O.A.: Two-level additive Schwarz methods for a discontiuous Galerkin approximation of second order elliptic problems. SIAM J. Numer. Anal. 39, 1343–1365 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Feng, X., Karakashian, O.A.: Two-level Schwarz methods for a discontinuous Galerkin approximation of the biharmonic equation. J. Sci. Comput. 22, 299–324 (2005)

    MATH  Google Scholar 

  18. Georgoulis, E., Houston, P., Virtanen, J.: An a posteriori error indicator for discontinuous Galerkin approximations of fourth order elliptic problems. IMA J. Numer. Anal. 31(3), 281–298 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Georgoulis, E., Houston, P.: Discontinuous Galerkin methods for the biharmonic problem. IMA J. Numer. Anal. 29(3), 573–594 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Grisvard, P.: Singularities in Boundary Value Problems. Masson, Paris (1992)

  21. Karakashian, O., Collins, C.: Two-level additive Schwarz methods for a discontinuous Galerkin approximation of second-order elliptic problems. IMA J. Numer. Anal. (Electron.) (2016). doi:10.1093/imanum/drw061

    Google Scholar 

  22. Karakashian, O., Jureidini, W.N.: A nonconforming finite element method for the stationary Navier–Stokes equations. SIAM J. Numer. Anal. 35, 93–120 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Smith, B.E., Bjørstad, P.E., Gropp, W.D.: Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, New York (1996)

    MATH  Google Scholar 

  24. Smears, I.: Nonoverlapping Domain Decomposition Preconditioners for Discontinuous Galerkin Finite Element Method \(H^ 2\)-Type Norms. (2014). arXiv:1409.4202

  25. Süli, E., Mozolevski, I.: \(hp\)-version interior penalty DGFEMs for the biharmonic equation. Comput. Method. Appl. Math. 196(13), 1851–1863 (2007)

    MathSciNet  MATH  Google Scholar 

  26. Smears, I., Süli, E.: Discontinuous Galerkin finite element approximation of Hamilton–Jacobi–Bellman equations with Cordes coefficients. SIAM J. Numer. Anal. 52, 993–1016 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Toselli, A., Widlund, O.: Domain Decomposition Methods: Algorithms and Theory. Springer, Berlin (2005)

    Book  MATH  Google Scholar 

  28. Wheeler, M.: An elliptic collocation-finite element method with interior penalties. SIAM J. Numer. Anal. 15, 152–161 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu, J.: Iterative methods by space decomposition and subspace correction. SIAM Rev. 34, 581–613 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  30. Xu, J., Zikatanov, L.: The method of alternating projections and the method of subspace corrections in Hilbert space. J. Am. Math. Soc. 15, 573–597 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, S., Xu, J.: Optimal solvers for fourth-order PDEs discretized on unstructured grids. SIAM J. Numer. Anal. 52(1), 282–307 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zhang, X.: Two-level Schwarz methods for the biharmonic problem discretized conforming \(C^1\) elements. SIAM J. Numer. Anal. 33(2), 555–570 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the referees for their valuable comments and recommendations resulting in improvements in presentation and content.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Karakashian.

Additional information

This work was partially supported by NSF Grants DMS-1216740 and DMS-1620288.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karakashian, O., Collins, C. Two-Level Additive Schwarz Methods for Discontinuous Galerkin Approximations of the Biharmonic Equation. J Sci Comput 74, 573–604 (2018). https://doi.org/10.1007/s10915-017-0453-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-017-0453-4

Keywords

Mathematics Subject Classification

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy