Skip to main content
Log in

A Posteriori Error Estimates for Maxwell’s Eigenvalue Problem

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We introduce a residual error indicator for the Nédélec finite element approximation of the eigenmodes of the Maxwell cavity problem. By using the known equivalence with a mixed problem we prove reliability and efficiency of the error indicator. Numerical results confirm the optimal behavior of an adaptive scheme based on the error indicator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis. Pure and Applied Mathematics (New York). Wiley, New York (2000)

    Book  MATH  Google Scholar 

  2. Amrouche, C., Bernardi, C., Dauge, M., Girault, V.: Vector potentials in three-dimensional non-smooth domains. Math. Methods Appl. Sci. 21(9), 823–864 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Babuška, I., Osborn, J.: Eigenvalue problems. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. II, pp. 641–787. North-Holland, Amsterdam (1991)

  4. Beck, R., Hiptmair, R., Hoppe, R.H.W., Wohlmuth, B.: Residual based a posteriori error estimators for eddy current computation. M2AN Math. Model. Numer. Anal. 34(1), 159–182 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Boffi, D.: Fortin operator and discrete compactness for edge elements. Numer. Math. 87(2), 229–246 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Boffi, D., Brezzi, F., Fortin, M.: Mixed Finite Element Methods and Applications, Volume 44 of Springer Series in Computational Mathematics. Springer, Heidelberg (2013)

    Book  MATH  Google Scholar 

  7. Boffi, D., Fernandes, P., Gastaldi, L., Perugia, I.: Computational models of electromagnetic resonators: analysis of edge element approximation. SIAM J. Numer. Anal. 36(4), 1264–1290 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Boffi, D., Gallistl, D., Gardini, F., Gastaldi, L.: Optimal convergence of adaptive FEM for eigenvalue clusters in mixed form. Math. Comput. 86(307), 2213–2237 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Boffi, D., Gardini, F., Gastaldi, L.: Some remarks on eigenvalue approximation by finite elements. In: Blowey, J., Jensen, M. (eds.) Frontiers in Numerical Analysis—Durham 2010, Volume 85 of Lect. Notes Comput. Sci. Eng., pp. 1–77. Springer, Heidelberg (2012)

  10. Boffi, D., Gastaldi, L., Rodríguez, R., Šebestová, I.: Residual-based a posteriori error estimation for the Maxwell’s eigenvalue problem. IMA J. Numer. Anal. (2017). https://doi.org/10.1093/imanum/drw066

    MathSciNet  MATH  Google Scholar 

  11. Cancès, E., Dusson, G., Maday, Y., Stamm, B., Vohralík, M.: Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: conforming approximations. SIAM J. Numer. Anal. 55(5), 2228–2254 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carstensen, C., Gedicke, J.: Guaranteed lower bounds for eigenvalues. Math. Comput. 83(290), 2605–2629 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chen, Z., Wang, L., Zheng, W.: An adaptive multilevel method for time-harmonic Maxwell equations with singularities. SIAM J. Sci. Comput. 29(1), 118–138 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cochez-Dhondt, S., Nicaise, S.: Robust a posteriori error estimation for the Maxwell equations. Comput. Methods Appl. Mech. Eng. 196(25–28), 2583–2595 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Costabel, M., Dauge, M., Martin, D., Vial, G.: Benchmark computations for Maxwell equations for the approximation of highly singular solutions. https://perso.univ-rennes1.fr/monique.dauge/core/index.html (2016)

  16. Creusé, E., Nicaise, S., Tang, Z.: Helmholtz decompositions of vector fields with mixed boundary conditions and an application to a posteriori finite element error analysis of the Maxwell system. Math. Methods Appl. Sci. 38(4), 738–750 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Douglas Jr., J., Roberts, J.E.: Mixed finite element methods for second order elliptic problems. Math. Appl. Comput. 1(1), 91–103 (1982)

    MathSciNet  MATH  Google Scholar 

  18. Durán, R.G., Gastaldi, L., Padra, C.: A posteriori error estimators for mixed approximations of eigenvalue problems. Math. Models Methods Appl. Sci. 9(8), 1165–1178 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Durán, R.G., Padra, C., Rodríguez, R.: A posteriori error estimates for the finite element approximation of eigenvalue problems. Math. Models Methods Appl. Sci. 13(8), 1219–1229 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gallistl, D.: An optimal adaptive FEM for eigenvalue clusters. Numer. Math. 130(3), 467–496 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Garau, E.M., Morin, P., Zuppa, C.: Convergence of adaptive finite element methods for eigenvalue problems. Math. Models Methods Appl. Sci. 19(5), 721–747 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gardini, F.: Mixed approximation of eigenvalue problems: a superconvergence result. M2AN Math. Model. Numer. Anal. 43(5), 853–865 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK Users’ Guide. Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods, Volume 6 of Software, Environments, and Tools. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1998)

    Book  MATH  Google Scholar 

  24. Monk, P.: A posteriori error indicators for Maxwell’s equations. J. Comput. Appl. Math. 100(2), 173–190 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nédélec, J.-C.: Mixed finite elements in \({ R}^{3}\). Numer. Math. 35(3), 315–341 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nicaise, S.: On Zienkiewicz–Zhu error estimators for Maxwell’s equations. C. R. Math. Acad. Sci. Paris 340(9), 697–702 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nicaise, S., Creusé, E.: A posteriori error estimation for the heterogeneous Maxwell equations on isotropic and anisotropic meshes. Calcolo 40(4), 249–271 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Raviart, P.-A., Thomas, J.M.: A mixed finite element method for 2nd order elliptic problems. In: Mathematical Aspects of Finite Element Methods (Proceedings Conference, Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), pp. 292–315. Lect. Notes Math., vol. 606. Springer, Berlin (1977)

  29. Schöberl, J.: A posteriori error estimates for Maxwell equations. Math. Comput. 77(262), 633–649 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Scott, L.R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions. Math. Comput. 54(190), 483–493 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  31. Si, H.: TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw. 41(2), Art. 11, 36 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Verfürth, R.: A posteriori error estimates for nonlinear problems. Finite element discretizations of elliptic equations. Math. Comput. 62(206), 445–475 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  33. Verfürth, R.: A Posteriori Error Estimation Techniques for Finite Element Methods. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2013)

    Book  MATH  Google Scholar 

  34. Zhong, L., Chen, L., Shu, S., Wittum, G., Xu, J.: Convergence and optimality of adaptive edge finite element methods for time-harmonic Maxwell equations. Math. Comput. 81(278), 623–642 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

First author gratefully acknowledges the hospitality of University of Concepción (Departamento de Ingeniería Matemática and CI\(^2\)MA) during his visit on January 2016. First and second authors were partially funded by IMATI-CNR and GNCS-INDAM. Third author was partially supported by BASAL project CMM, Universidad de Chile (Chile). Fourth author was supported by Fondecyt Postdoctoral Grant No. 3150047, CONICYT (Chile).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodolfo Rodríguez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boffi, D., Gastaldi, L., Rodríguez, R. et al. A Posteriori Error Estimates for Maxwell’s Eigenvalue Problem. J Sci Comput 78, 1250–1271 (2019). https://doi.org/10.1007/s10915-018-0808-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-018-0808-5

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy