Abstract
This article aims to study the flow of ethylene glycol-based molybdenum disulfide generalized nanofluid over an isothermal vertical plate. A fractional model with non-singular and non-local kernel, namely Atangana–Baleanu fractional derivatives, is developed for Casson nanofluid in the form of partial differential equations along with appropriate initial and boundary conditions. Molybdenum disulfide nanoparticles of spherical shape are suspended in ethylene glycol taken as conventional base fluid. The exact solutions are developed for velocity and temperature via the Laplace transform technique. In limiting sense, the obtained solutions are reduced to fractional Newtonian \((\beta \to \infty )\), classical Casson fluid \((\alpha \to 1)\) and classical Newtonian nanofluid. The influence of various pertinent parameters is analyzed in various plots with the useful physical discussion.







Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Abbreviations
- \(p_{\text{y}}\) :
-
The yield stress of the non-Newtonian fluid
- \(\pi\) :
-
The product of the component of deformation rate itself
- \(\pi_{\text{c}}\) :
-
The critical value of this product
- \(\mu_{\upgamma}\) :
-
Plastic dynamic viscosity
- \(u\) :
-
Velocity of the fluid
- \(T\) :
-
Temperature of the fluid
- \(g\) :
-
Acceleration due to gravity
- \(c_{\text{p}}\) :
-
Specific heat at a constant pressure
- \(k_{\text{f}}\) :
-
Thermal conductivity of the fluid
- \(T_{\infty }\) :
-
Fluid temperature far away from the plate
- \(q\) :
-
Laplace transforms parameter
- \(\nu_{\text{f}}\) :
-
Kinematic viscosity of the fluid
- \(\mu_{\text{f}}\) :
-
Dynamic viscosity
- \(\rho_{\text{f}}\) :
-
Fluid density
- \(\rho_{\text{s}}\) :
-
The density of the solid
- \(U\) :
-
The amplitude of the velocity
- \(\beta_{\text{T}}\) :
-
The volumetric coefficient of thermal expansion
- \(B_{0}\) :
-
External magnetic field
- \(\rho_{\text{nf}}\) :
-
Nanofluids density
- \(\mu_{\text{nf}}\) :
-
Dynamic viscosity of nanofluids
- \(\sigma_{\text{nf}}\) :
-
The electrical conductivity of nanofluids
- \(\beta\) :
-
The material parameter of Casson fluid
- \((\beta_{\text{T}} )_{\text{nf}}\) :
-
Thermal expansion coefficient of nanofluids,
- \((\rho c_{\text{p}} )_{\text{nf}}\) :
-
Specific heat capacity of nanofluids
- \(k_{\text{nf}}\) :
-
The thermal conductivity of nanofluids
- \(M\) :
-
Magnetic parameter
- \(Gr\) :
-
Thermal Grasshof number
- \(Pr\) :
-
Prandtl number
- \({\text{Nu}}_{\text{x}}\) :
-
Nusselt number
- \(\phi\) :
-
Nanoparticles volume fraction
- \(\alpha\) :
-
Fractional order/fractional parameter
References
Li Y, Tung S, Schneider E, Xi S. A review on development of nanofluid preparation and characterization. Powder Technol. 2009;196(2):89–101.
Bashirnezhad K, Bazri S, Safaei MR, Goodarzi M, Dahari M, Mahian O, Wongwises S. Viscosity of nanofluids: a review of recent experimental studies. Int Commun Heat Mass Transf. 2016;73:114–23.
Mohamoud MJ, Singh T, Mahmoud SE, Koc M, Samara A, Isaifan RJ, Atieh MA. Critical review on nanofluids: preparation, characterization and applications. J Nanomater. 2016. https://doi.org/10.1155/2016/6717624.
Öztop HF, Estellé P, Yan WM, Al-Salem K, Orfi J, Mahian O. A brief review of natural convection in enclosures under localized heating with and without nanofluids. Int Commun Heat Mass Transf. 2015;60:37–44.
Kasaeian A, Azarian RD, Mahian O, Kolsi L, Chamkha AJ, Wongwises S, Pop I. Nanofluid flow and heat transfer in porous media: a review of the latest developments. Int J Heat Mass Transf. 2017;107:778–91.
Maxwell JC, Garnett W, Pesic P. An elementary treatise on electricity. North Chelmsford: Courier Corporation; 2005.
Gul A, Khan I, Shafie S, Khalid A, Khan A. Heat transfer in MHD mixed convection flow of a ferrofluid along a vertical channel. PLoS ONE. 2015;10(11):e0141213.
Choi SUS, Eastman JA. In: International mechanical engineering congress and exhibition, San Francisco, CA, USA, 12–17 Nov 1995; 1995.
Das SK, Choi SU, Yu W, Pradeep T. Nanofluids: science and technology. New York: Wiley; 2007.
Wang XQ, Mujumdar AS. Heat transfer characteristics of nanofluids: a review. Int J Therm Sci. 2007;46(1):1–19.
Ding Y, Chen H, Wang L, Yang CY, He Y, Yang W, Lee WP, Zhang L, Huo R. Heat transfer intensification using nanofluids. KONA Powder Part J. 2007;25:23–38.
Wang XQ, Mujumdar AS. A review on nanofluids-part II: experiments and applications. Braz J Chem Eng. 2008;25(4):631–48.
Buongiorno J. Convective transport in nanofluids. J Heat Transf. 2006;128(3):240–50.
Ali F, Aamina B, Khan I, Sheikh NA, Saqib M. Magnetohydrodynamic flow of brinkman-type engine oil based MoS2-nanofluid in a rotating disk with Hall Effect. Int J Heat Technol. 2017;4(35):893–902.
Shahzad F, Haq RU, Al-Mdallal QM. Water driven Cu nanoparticles between two concentric ducts with oscillatory pressure gradient. J Mol Liq. 2016;224:322–32.
Khan U, Ahmed N, Mohyud-Din ST. Heat transfer effects on carbon nanotubes suspended nanofluid flow in a channel with non-parallel walls under the effect of velocity slip boundary condition: a numerical study. Neural Comput Appl. 2017;28(1):37–46.
Wakif A, Boulahia Z, Sehaqui R. Numerical analysis of the onset of longitudinal convective rolls in a porous medium saturated by an electrically conducting nanofluid in the presence of an external magnetic field. Results Phys. 2017. https://doi.org/10.1016/j.rinp.2017.06.003.
Sheikholeslami M, Vajravelu K. Forced convection heat transfer in Fe3O4-ethylene glycol nanofluid under the influence of Coulomb force. J Mol Liq. 2017;233:203–10.
Sheikholeslami M, Hayat T, Alsaedi A. Numerical simulation of nanofluid forced convection heat transfer improvement in existence of magnetic field using lattice Boltzmann method. Int J Heat Mass Transf. 2017;108:1870–83.
Aman S, Khan I, Zulkhibri I, Al-Mdallal QM. Heat transfer enhancement in free convection flow of CNTs Maxwell nanofluids with four different types of molecular liquids. Sci Rep. 2017;7(2445):1–13.
Ali F, Gohar M, Khan I. MHD flow of water-based Brinkman type nanofluid over a vertical plate embedded in a porous medium with variable surface velocity, temperature and concentration. J Mol Liq. 2016;223:412–9.
Wang H, Yu L, Lee YH, Shi Y, Hsu A, Chin ML, Li LJ, Dubey M, Kong J, Palacios T. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 2012;12(9):4674–80.
Das S, Chen HY, Penumatcha AV, Appenzeller J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2012;13(1):100–5.
Radisavljevic B, Radenovic A, Brivio J, Giacometti IV, Kis A. Single-layer MoS2 transistors. Nat Nanotechnol. 2011;6(3):147–50.
Castellanos-Gomez A, Poot M, Steele GA, Van der Zant HS, Agraït N, Rubio-Bollinger G. Mechanical properties of freely suspended semiconducting graphene-like layers based on MoS2. Nanoscale Res Lett. 2012;7(1):1.
Winer WO. Molybdenum disulfide as a lubricant: a review of the fundamental knowledge. Wear. 1967;10(6):422–52.
Kato H, Takama M, Iwai Y, Washida K, Sasaki Y. Wear and mechanical properties of sintered copper–tin composites containing graphite or molybdenum disulfide. Wear. 2003;255(1):573–8.
Mao C, Huang Y, Zhou X, Gan H, Zhang J, Zhou Z. The tribological properties of nanofluid used in minimum quantity lubrication grinding. Int J Adv Manuf Technol. 2014;71(5–8):1221–8.
Shafie S, Gul A, Khan I. Molybdenum disulfide nanoparticles suspended in water-based nanofluids with mixed convection and flow inside a channel filled with saturated porous medium. In: Proceedings of the 2nd international conference on mathematics, engineering and industrial applications (icomeia2016), Vol. 1775, No. 1. AIP Publishing; 2016. p. 030042.
Khan I, Gul A, Shafie S. Effects of magnetic field on molybdenum disulfide nanofluids in mixed convection flow inside a channel filled with a saturated porous medium. J Porous Med. 2017;20(5):435–48.
Khan I. Shape effects of MoS2 nanoparticles on MHD slip flow of molybdenum disulphide nanofluid in a porous medium. J Mol Liq. 2017;233:442–51.
Saqib M, Ali F, Khan I, Sheikh NA, Jan SAA, Samiulhaq. Exact solutions for free convection flow of generalized Jeffrey fluid: a Caputo–Fabrizio fractional model. Alex Eng J. 2017. https://doi.org/10.1016/j.aej.2017.03.017.
Hristov J. Derivatives with non-singular kernels from the Caputo–Fabrizio definition and beyond: appraising analysis with emphasis on diffusion models. In: Bhalekar S, editor. Frontiers in fractional calculus, vol. 1. Bentham Science Publishers; 2017. p. 270–342.
Ali F, Saqib M, Khan I, Sheikh NA. Application of Caputo–Fabrizio derivatives to MHD free convection flow of generalized Walters’-B fluid model. Eur Phys J Plus. 2016;131(10):377.
Sheikh NA, Ali F, Saqib M, Khan I, Jan SAA. A comparative study of Atangana–Baleanu and Caputo–Fabrizio fractional derivatives to the convective flow of a generalized Casson fluid. Eur Phys J Plus. 2017;132(1):54.
Al-Mdallal Q, Khan A, Abro KA. Analytical solutions of fractional Walter’s B fluid with applications. Entropy. 2017.
Abro KA, Khan I. Analysis of the heat and mass transfer in the MHD flow of a generalized Casson fluid in a porous space via non-integer order derivatives without a singular kernel. Chin J Phys. 2017;55(4):1583–95.
Abro KA, Hussain M, Baig MM. An analytic study of molybdenum disulfide nanofluids using the modern approach of Atangana–Baleanu fractional derivatives. Eur Phys J Plus. 2017;132(10):439.
Ali F, Jan SAA, Khan I, Gohar M, Sheikh NA. Solutions with special functions for time fractional free convection flow of Brinkman-type fluid. Eur Phys J Plus. 2016;131(9):310.
Atangana A, Baleanu D. New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm Sci. 2016;20(2):763–9.
Atanganaa A, Kocab I. On the new fractional derivative and application to nonlinear Baggs and Freedman model. J Nonlinear Sci Appl. 2016;9:2467–80.
Atangana A, Koca I. Chaos in a simple nonlinear system with Atangana–Baleanu derivatives with fractional order. Chaos Solitons Fractals. 2016;89:1–8.
Abro KA, Solangi MA. Heat transfer in magnetohydrodynamic second grade fluid with porous impacts using Caputo–Fabrizoi fractional derivatives. J Math. 2017;49(2):113–25.
Sheikh NA, Ali F, Khan I, Gohar M, Saqib M. On the applications of nanofluids to enhance the performance of solar collectors: a comparative analysis of Atangana–Baleanu and Caputo–Fabrizio fractional models. Eur Phys J Plus. 2017;132(12):540.
Atangana A. On the new fractional derivative and application to nonlinear Fisher’s reaction–diffusion equation. Appl Math Comput. 2016;273:948–56.
Atangana A, Secer A. A note on fractional order derivatives and table of fractional derivatives of some special functions. Abstr Appl Anal. 2013;2013:279681. https://doi.org/10.1155/2013/279681.
Sheikh NA, Ali F, Saqib M, Khan I, Jan SAA, Alshomrani AS, Alghamdi MS. Comparison and analysis of the Atangana–Baleanu and Caputo–Fabrizio fractional derivatives for generalized Casson fluid model with heat generation and chemical reaction. Results Phys. 2017;7:789–800.
Casson N. A flow equation for pigment-oil suspensions of the printing ink type. Oxford: Pergamon Press; 1959.
Aghili A. Solution to time fractional Couette flow. In Other Words. 2017;3:1–9.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Saqib, M., Ali, F., Khan, I. et al. Convection in ethylene glycol-based molybdenum disulfide nanofluid. J Therm Anal Calorim 135, 523–532 (2019). https://doi.org/10.1007/s10973-018-7054-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10973-018-7054-9