Skip to main content

A novel neural network based approach to latent overlapped fingerprints separation

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Overlapped fingerprints are often found in latent fingerprints lifted from crime scenes and in live-scan fingerprint images when the surface of fingerprint sensors contains residues of fingerprints of previous users. Such overlapped fingerprints usually cannot be processed accurately by contemporary commercial fingerprint matchers, which has led many researchers to propose methods designed to separate the overlapped fingerprints. In this paper, we propose a novel latent overlapped fingerprints separation algorithm based on neural networks. Our algorithm works in a block-based fashion. After producing an initial estimation of the orientation fields present in the overlapped fingerprint image, it uses a neural network to separate the mixed orientation fields, which are then post-processed to correct remaining errors and enhanced using the global orientation field enhancement model. Experimental results show that the proposed algorithm outperforms the state-of-the-art algorithm in terms of accuracy on the Tsinghua Overlapped Latent Fingerprint Database (containing real-world overlapped fingerprints obtained by forensic methods), while also showing encouraging results (second only to state-of-the-art) on the Tsinghua Simulated Overlapped Fingerprint Database (containing artificially overlapped fingerprints of a good quality).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Chen F, Feng J, Jain A, Zhou J, Zhang J (2011) Separating overlapped fingerprints. IEEE Trans Inf Forensics Secur 6(2):346–359. ISSN 1556-6013.doi:10.1109/TIFS.2011.2114345

    Article  Google Scholar 

  2. Chetty G, Wagner M (2006) Multi-level liveness verification for face-voice biometric authentication. In: Biometrics symposium: special session on research at the biometric consortium conference, 2006. IEEE, pp 1–6

  3. DeCann B, Ross A (2013) Relating ROC and CMC curves via the biometric menagerie. In: IEEE sixth international conference on biometrics: theory, applications and systems (BTAS), 2013.doi:10.1109/BTAS.2013.6712705, pp 1–8

  4. Feng J, Shi Y, Zhou J (2012) Robust and efficient algorithms for separating latent overlapped fingerprints. IEEE Trans Inf Forensics Secur 7(5):1498–1510. ISSN 1556-6013. doi:doi:10.1109/TIFS.2012.2204254doi:10.1109/TIFS.2012.2204254

  5. Feng J, Zhou J, Jain A (2013) Orientation field estimation for latent fingerprint enhancement. IEEE Trans Pattern Anal Mach Intell 35(4):925–940. ISSN 0162-8828.doi:10.1109/TPAMI.2012.155

    Article  Google Scholar 

  6. Gorodnichy D (2011) Multi-order biometric score analysis framework and its application to designing and evaluating biometric systems for access and border control. In: IEEE Workshop on computational intelligence in biometrics and identity management (CIBIM), 2011.doi:10.1109/CIBIM.2011.5949204, pp 44–53

  7. Gorodnichy DO (2010) Multi-order analysis framework for comprehensive biometric performance evaluation. In: SPIE defense, security, and sensing. International Society for Optics and Photonics, pp 76670G–76670G

  8. Hassoun MH (1995) Fundamentals of artificial neural networks. MIT Press

  9. Jain A, Feng J (2009) Latent palmprint matching. IEEE Trans Pattern Anal Mach Intell 31(6):1032–1047. ISSN 0162-8828.doi:10.1109/TPAMI.2008.242

    Article  Google Scholar 

  10. Jain A, Flynn P, Ross AA (2007) Handbook of biometrics. Springer Science & Business Media

  11. Maio D, Maltoni D, Cappelli R, Wayman JL, Jain AK (2002a) FVC2002: second fingerprint verification competition. In: 16Th international conference on pattern recognition, 2002. Proceedings, vol 3. IEEE, pp 811–814

  12. Maio D, Maltoni D, Cappelli R, Wayman JL, Jain AK (2002b) FVC2002: the second international fingerprint verification competition. http://bias.csr.unibo.it/fvc2002/

  13. Maltoni D, Maio D, Jain A, Prabhakar S (2009) Handbook of fingerprint recognition. Springer Science & Business Media

  14. Msiza IS, Mathekga ME, Nelwamondo FV, Marwala T (2011) Fingerprint segmentation: an investigation of various techniques and a parameter study of a variance-based method. International Journal of Innovative Computing, Information, and Control (IJICIC) 7:5313–5326

  15. Orczyk T, Wieclaw L (2011) Fingerprint ridges frequency. In: Third world congress on nature and biologically inspired computing (naBIC), 2011. IEEE, pp 558–561

  16. Rosenfeld A, Hummel RA, Zucker SW (1976) Scene labeling by relaxation operations. IEEE Trans Syst Man Cybern 6:420–433

    Article  MathSciNet  MATH  Google Scholar 

  17. Shi Y, Feng J, Zhou J (2011) Separating overlapped fingerprints using constrained relaxation labeling. In: Proceedings of the international joint conference on biometrics

  18. Tamura S, Tateishi M (1997) Capabilities of a four-layered feedforward neural network: four layers versus three. IEEE Trans Neural Netw 8(2):251–255. ISSN 1045-9227.doi:10.1109/72.557662

    Article  Google Scholar 

  19. Zhang N, Yang X, Zang Y, Jia X, Tian J (2014a) Overlapped fingerprints separation based on adaptive orientation model fitting. In: 22nd international conference on pattern recognition (ICPR), 2014, pp 678–683, DOIdoi:10.1109/ICPR.2014.127, (to appear in print)

  20. Zhang N, Zang Y, Yang X, Jia X, Tian J (2014b) Adaptive orientation model fitting for latent overlapped fingerprints separation. IEEE Trans Inf Forensics Secur 9(10):1547–1556. ISSN 1556-6013.doi:10.1109/TIFS.2014.2340573

  21. Zhao Q, Jain A (2012) Model based separation of overlapping latent fingerprints. IEEE Trans Inf Forensics Secur 7 (3):904–918. ISSN 1556-6013.doi:10.1109/TIFS.2012.2187281

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oge Marques.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stojanović, B., Nešković, A. & Marques, O. A novel neural network based approach to latent overlapped fingerprints separation. Multimed Tools Appl 76, 12775–12799 (2017). https://doi.org/10.1007/s11042-016-3696-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-3696-4

Keywords

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy