Abstract
In this paper, a new algorithm is proposed for forgery detection in MPEG videos using spatial and time domain analysis of quantization effect on DCT coefficients of I and residual errors of P frames. The proposed algorithm consists of three modules, including double compression detection, malicious tampering detection and decision fusion. Double compression detection module employs spatial domain analysis using first significant digit distribution of DCT coefficients in I frames to detect single and double compressed videos using an SVM classifier. Double compression does not necessarily imply the existence of malignant tampering in the video. Therefore, malicious tampering detection module utilizes time domain analysis of quantization effect on residual errors of P frames to identify malicious inter-frame forgery comprising frame insertion or deletion. Finally, decision fusion module is used to classify input videos into three categories, including single compressed videos, double compressed videos without malicious tampering and double compressed videos with malicious tampering. The experimental results and the comparison of the results of the proposed method with those of other methods show the efficiency of the proposed algorithm.









Similar content being viewed by others
References
Arab F, Abdullah SM, Hashim SZM, Manaf AA, Zamani M (2015) A robust video watermarking technique for the tamper detection of surveillance systems. Multimed Tools Appl 1–31. doi:10.1007/s11042-015-2800-5
Bestagini P, Milani S, Tagliasacchi M, Tubaro S (2013) Local tampering detection in video sequences. In: 2013 I.E. 15th International Workshop on Multimedia Signal Processing (MMSP). IEEE, p 488–493
Carter T (2007) An introduction to information theory and entropy. Complex systems summer school, Santa Fe
Chen PH, Lin CJ, Schölkopf B (2005) A tutorial on ν‐support vector machines. Appl Stoch Model Bus Ind 21(2):111–136
Chen W, Shi YQ (2009) Detection of double MPEG compression based on first digit statistics. In: Digital watermarking. Springer, p 16–30
Dong Q, Yang G, Zhu N (2012) A MCEA based passive forensics scheme for detecting frame-based video tampering. Digit Investig 9(2):151–159
Dueck D (2001) MPEG-2 video transcoding. University of Manitoba
Feng C, Xu Z, Zhang W, Xu Y (2014) Automatic location of frame deletion point for digital video forensics. In: Proceedings of the 2nd ACM workshop on Information hiding and multimedia security. ACM, p 171–179
Gironi A, Fontani M, Bianchi T, Piva A, Barni M (2014) A video forensic technique for detecting frame deletion and insertion. In: 2014 I.E. International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, p 6226–6230
Jiang X, Wang W, Sun T, Shi YQ, Wang S (2013) Detection of double compression in MPEG-4 videos based on Markov statistics. IEEE Signal Process Lett 20(5):447–450
Kang X, Liu J, Liu H, Wang ZJ (2015) Forensics and counter anti-forensics of video inter-frame forgery. Multimed Tools Appl 1–21. doi:10.1007/s11042-015-2762-7
Li F, Huang T (2014) Video copy-move forgery detection and localization based on structural similarity. In: Proceedings of the 3rd International Conference on Multimedia Technology (ICMT 2013). Springer, p 63–76
Liao D, Yang R, Liu H, Li J, Huang J, Double H (2011) 264/AVC compression detection using quantized nonzero AC coefficients. In: IS&T/SPIE Electronic Imaging. International Society for Optics and Photonics, p 78800Q-78800Q-78810
Lin C-S, Tsay J-J (2014) A passive approach for effective detection and localization of region-level video forgery with spatio-temporal coherence analysis. Digit Investig 11(2):120–140
Milani S, Fontani M, Bestagini P, Barni M, Piva A, Tagliasacchi M, Tubaro S (2012) An overview on video forensics. APSIPA Trans Signal Inf Proces 1, e2
Milani S, Tagliasacchi M, Tubaro S (2014) Discriminating multiple JPEG compressions using first digit features. APSIPA Trans Signal Inf Proces 3, e19
Ravi H, Subramanyam A, Gupta G, Kumar BA (2014) Compression noise based video forgery detection. In: 2014 I.E. International Conference on Image Processing (ICIP). IEEE, p 5352–5356
Rocha A, Scheirer W, Boult T, Goldenstein S (2011) Vision of the unseen: current trends and challenges in digital image and video forensics. ACM Comput Surv 43(4):1–42. doi:10.1145/1978802.1978805
Shanableh T (2013) Detection of frame deletion for digital video forensics. Digit Investig 10(4):350–360
Stamm MC, Lin WS, Liu KR (2012) Temporal forensics and anti-forensics for motion compensated video. IEEE Trans Inf Forensics Secur 7(4):1315–1329
Su Y, Nie W, Zhang C (2011) A frame tampering detection algorithm for MPEG videos. In: 2011 6th IEEE Joint International Information Technology and Artificial Intelligence Conference (ITAIC). IEEE, p 461–464
Sun T, Wang W, Jiang X (2012) Exposing video forgeries by detecting MPEG double compression. In: 2012 I.E. International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, p 1389–1392
Tian L, Zheng N, Xue J, Li C (2015) Authentication and copyright protection watermarking scheme for H. 264 based on visual saliency and secret sharing. Multimed Tools Appl 74(9):2991–3011. doi:10.1007/s11042-013-1765-5
Union IT (1995) ISO/IEC 13818–2 MPEG-2. Geneva, ITU H 262
Vazquez-Padin D, Fontani M, Bianchi T, Comesaña P, Piva A, Barni M (2012) Detection of video double encoding with GOP size estimation. In: 2012 I.E. International Workshop on Information Forensics and Security (WIFS). IEEE, p 151–156
Wang W, Farid H (2006) Exposing digital forgeries in video by detecting double MPEG compression. In: Proceedings of the 8th workshop on Multimedia and security. ACM, p 37–47
Wang W, Farid H (2009) Exposing digital forgeries in video by detecting double quantization. In: Proceedings of the 11th ACM workshop on Multimedia and security. ACM, p 39–48
Wu Y, Jiang X, Sun T, Wang W (2014) Exposing video inter-frame forgery based on velocity field consistency. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, p 2674–2678
Xu J, Su Y, You X (2012) Detection of video transcoding for digital forensics. In: International Conference on Audio, Language and Image Processing (ICALIP). IEEE, p 160–164
Yang J, Huang T, Su L (2014) Using similarity analysis to detect frame duplication forgery in videos. Multimed Tools Appl 75(4):1793–1811. doi:10.1007/s11042-014-2374-7
YUV Video Sequences (Accessed 2013) http://trace.eas.asu.edu/yuv/& https://media.xiph.org/video/derf/.
Author information
Authors and Affiliations
Corresponding author
Appendix A
Appendix A
The following videos were used to perform the experiments in this paper:
Akiyo, Bowing, Bridge-Close, Bridge-Far, Claire, Coastguard, Container, Deadline, Galleon, Grandma, Hall monitor, Pamphlet, Mother and Daughter, News, Paris, Salesman, Sign-Irene, Silent, Students, Suzie, Vtc1nw, WashDC.
Rights and permissions
About this article
Cite this article
Abbasi Aghamaleki, J., Behrad, A. Malicious inter-frame video tampering detection in MPEG videos using time and spatial domain analysis of quantization effects. Multimed Tools Appl 76, 20691–20717 (2017). https://doi.org/10.1007/s11042-016-4004-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-016-4004-z