Skip to main content
Log in

Multi-level fusion of graph based discriminant analysis for hyperspectral image classification

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Based on the graph-embedding framework, sparse graph-based discriminant analysis (SGDA), collaborative graph-based discriminant analysis (CGDA) and low rankness graph based discriminant analysis (LGDA) have been proposed with different graph construction. However, due to the inherent characteristics of 1-norm, 2-norm and nuclear-norm, single graph may be not optimal in capturing global and local structure of the data. In this paper, a multi-level fusion strategy is proposed in combining the three graph construction methods: 1) multiple graphs-based discriminant analysis (MGDA) in feature level with adaptive weights; 2) decision level fusion with D-S theory (GDA-DS), followed by a typical support vector machine (SVM) classification. Experimental results on three hyperspectral images datasets demonstrate that results with the fused strategy prevails with better classification performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Bao B, Liu G, Xu C, Yan S (2012) Inductive robust principal component analysis. IEEE Trans Image Process 21(8):3794–3800

    Article  MathSciNet  Google Scholar 

  2. Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396

    Article  MATH  Google Scholar 

  3. Benediktsson JA, Palmason JA, Sveinsson JR (2005) Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans Geosci Remote Sens 43(3):480–491

    Article  Google Scholar 

  4. Bo C, Lu H, Wang D (2016) Hyperspectral image classification via jcr and svm models with decision fusion. IEEE Geosci Remote Sens Lett 13(2):177–181

    Article  Google Scholar 

  5. Bo C, Lu H, Wang D (2016) Robust joint nearest subspace for hyperspectral image classification. Remote Sens Lett 7(10):915–924

    Article  Google Scholar 

  6. Candès E J, Li X, Ma Y, Wright J (2011) Robust principal component analysis?. J ACM 3:58

    MathSciNet  MATH  Google Scholar 

  7. Du Q, Yang H (2008) Similarity-based unsupervised band selection for hyperspectral image analysis. IEEE Geosci Remote Sens Lett 5(4):564–568

    Article  Google Scholar 

  8. Fauvel M, Chanussot J, Benediktsson JA (2009) Kernel principal component analysis for the classifcation of hyperspectral remote sensing data over urban areas. EURASIP J Appl Signal Process 2009(1):1–14

    Article  Google Scholar 

  9. He X, Cai D, Yan S, Zhang H-J (2005) Neighborhood preserving embedding. In: Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1, vol. 2. IEEE, pp 1208–1213

  10. Kang X, Li S, Benediktsson JA (2014) Spectral-spatial hyperspectral image classification with edge-preserving filtering. IEEE Trans Geosci Remote Sens 52 (5):2666–2677

    Article  Google Scholar 

  11. Kang X, Li S, Fang L, Benediktsson JA (2015) Intrinsic image decomposition for feature extraction of hyperspectral images. IEEE Trans Geosci Remote Sens 53 (4):2241–2253

    Article  Google Scholar 

  12. Kruskal JB (1964) Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29(1):1–27

    Article  MathSciNet  MATH  Google Scholar 

  13. Li W, Du Q, zhang B (2015) Combined sparse and collaborative representation for hyperspectral target detection. Pattern Recogn 48:3904–3916

    Article  Google Scholar 

  14. Li W, Prasad S, Fowler JE (2013) Noise-adjusted subspace discriminant analysis for hyperspectral imagery classification. IEEE Geosci Remote Sens Lett 10 (6):1374–1378

    Article  Google Scholar 

  15. Li W, Prasad S, Fowler JE (2014) Decision fusion in kernel-induced spaces for hyperspectral image classification. IEEE Trans Geosci Remote Sens 52(6):3399–3411

    Article  Google Scholar 

  16. Li W, Prasad S, Fowler JE (2014) Hyperspectral image classification using Gaussian mixture model and Markov random field. IEEE Geosci Remote Sens Lett 11 (1):153–157

    Article  Google Scholar 

  17. Li W, Chen C, Su H, Du Q (2015) Local binary patterns and extreme learning machine for hyperspectral imagery classification. IEEE Trans Geosci Remote Sens 53(7):3681–3693

    Article  Google Scholar 

  18. Li W, Prasad S, Fowler JE, Bruce LM (2011) Locality-preserving discriminant analysis in kernel-induced feature spaces for hyperspectral image classification. IEEE Geosci Remote Sens Lett 8(5):894–898

    Article  Google Scholar 

  19. Li W, Prasad S, Fowler JE, Bruce LM (2012) Locality-preserving dimensionality reduction and classification for hyperspectral image analysis. IEEE Trans Geosci Remote Sens 50(4):1185–1198

    Article  Google Scholar 

  20. Ly N, Du Q, Fowler JE (2014) Collaborative graph-based discriminant analysis for hyperspectral imagery. IEEE J Selected Topics Appl Earth Observations Remote Sens 7(6):2688–2696

    Article  Google Scholar 

  21. Ly NH, Du Q, Fowler JE (2014) Collaborative graph-based discriminant analysis for hyperspectral imagery. IEEE J Selected Topics Appl Earth Observations Remote Sens 7(6):2688–2696

    Article  Google Scholar 

  22. Ly N, Du Q, Fowler JE (2014) Sparse Graph-based discriminant analysis for hyperspectral imagery. IEEE Trans Geosci Remote Sens 52(7):3872–3884

    Article  Google Scholar 

  23. Melgani F, Bruzzone L (2004) Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Remote Sens 42(8):1778–1790

    Article  Google Scholar 

  24. Niyogi X (2004) Locality preserving projections. In: Neural information processing systems, vol. 16. MIT, p 153

  25. Plaza A, Martínez P, Plaza J, Pérez R (2005) Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations. IEEE Trans Geosci Remote Sens 3:43

    Google Scholar 

  26. Rohban MH, Rabiee HR (2012) Supervised neighborhood graph construction for semi-supervised classification. Pattern Recogn 45(4):1363–1372

    Article  MATH  Google Scholar 

  27. Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326

    Article  Google Scholar 

  28. Shaw G, Manolakis D (2002) Signal processing for hyperspectral image exploitation. IEEE Signal Process Mag 19:12–16

    Article  Google Scholar 

  29. Su H, Yang H, Du Q, Sheng Y (2011) Semisupervised band clustering for dimensionality reduction of hyperspectral imagery. IEEE Geosci Remote Sens Lett 8 (6):1135–1139

    Article  Google Scholar 

  30. Tenenbaum JB, De Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323

    Article  Google Scholar 

  31. Vapnik V, Vapnik V (1998) Statistical learning theory, vol 1. Wiley, New York

  32. Wright J, Ma Y, Mairal J, Sapiro G, Huang T, Yan S (2010) Sparse representation for computer vision and pattern recognition. Proc IEEE 98(6):1031–1044

    Article  Google Scholar 

  33. Yan S, Xu D, ZHang B, Zhang H, Yang Q, Lin S (2007) Graph embedding and extensions: A general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40– 51

    Article  Google Scholar 

  34. Zeng D, Xu J, Xu G (2008) Data fusion for traffic incident detector using ds evidence theory with probabilistic svms. J Comput 3(10):36–43

    Article  Google Scholar 

  35. Zhuang L, Gao H, Lin Z, Ma Y, Zhang X, Yu N (2012) Non-negative low rank and sparse graph for semi-supervised learning. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern recognition, Providence, Rhode Island, pp 2328–2335

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grants No. NSFC-61571033, 61302164, 61501017 and partly by the Fundamental Research Funds for the Central Universities under Grants No. BUCTRC201401, BUCTRC201615, YS1404, XK1521, ZY1504.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Ran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, F., Ran, Q. & Li, W. Multi-level fusion of graph based discriminant analysis for hyperspectral image classification. Multimed Tools Appl 76, 22959–22977 (2017). https://doi.org/10.1007/s11042-016-4183-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-016-4183-7

Keywords

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy