Abstract
Based on the graph-embedding framework, sparse graph-based discriminant analysis (SGDA), collaborative graph-based discriminant analysis (CGDA) and low rankness graph based discriminant analysis (LGDA) have been proposed with different graph construction. However, due to the inherent characteristics of ℓ 1-norm, ℓ 2-norm and nuclear-norm, single graph may be not optimal in capturing global and local structure of the data. In this paper, a multi-level fusion strategy is proposed in combining the three graph construction methods: 1) multiple graphs-based discriminant analysis (MGDA) in feature level with adaptive weights; 2) decision level fusion with D-S theory (GDA-DS), followed by a typical support vector machine (SVM) classification. Experimental results on three hyperspectral images datasets demonstrate that results with the fused strategy prevails with better classification performance.













Similar content being viewed by others
References
Bao B, Liu G, Xu C, Yan S (2012) Inductive robust principal component analysis. IEEE Trans Image Process 21(8):3794–3800
Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396
Benediktsson JA, Palmason JA, Sveinsson JR (2005) Classification of hyperspectral data from urban areas based on extended morphological profiles. IEEE Trans Geosci Remote Sens 43(3):480–491
Bo C, Lu H, Wang D (2016) Hyperspectral image classification via jcr and svm models with decision fusion. IEEE Geosci Remote Sens Lett 13(2):177–181
Bo C, Lu H, Wang D (2016) Robust joint nearest subspace for hyperspectral image classification. Remote Sens Lett 7(10):915–924
Candès E J, Li X, Ma Y, Wright J (2011) Robust principal component analysis?. J ACM 3:58
Du Q, Yang H (2008) Similarity-based unsupervised band selection for hyperspectral image analysis. IEEE Geosci Remote Sens Lett 5(4):564–568
Fauvel M, Chanussot J, Benediktsson JA (2009) Kernel principal component analysis for the classifcation of hyperspectral remote sensing data over urban areas. EURASIP J Appl Signal Process 2009(1):1–14
He X, Cai D, Yan S, Zhang H-J (2005) Neighborhood preserving embedding. In: Tenth IEEE International Conference on Computer Vision (ICCV’05) Volume 1, vol. 2. IEEE, pp 1208–1213
Kang X, Li S, Benediktsson JA (2014) Spectral-spatial hyperspectral image classification with edge-preserving filtering. IEEE Trans Geosci Remote Sens 52 (5):2666–2677
Kang X, Li S, Fang L, Benediktsson JA (2015) Intrinsic image decomposition for feature extraction of hyperspectral images. IEEE Trans Geosci Remote Sens 53 (4):2241–2253
Kruskal JB (1964) Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29(1):1–27
Li W, Du Q, zhang B (2015) Combined sparse and collaborative representation for hyperspectral target detection. Pattern Recogn 48:3904–3916
Li W, Prasad S, Fowler JE (2013) Noise-adjusted subspace discriminant analysis for hyperspectral imagery classification. IEEE Geosci Remote Sens Lett 10 (6):1374–1378
Li W, Prasad S, Fowler JE (2014) Decision fusion in kernel-induced spaces for hyperspectral image classification. IEEE Trans Geosci Remote Sens 52(6):3399–3411
Li W, Prasad S, Fowler JE (2014) Hyperspectral image classification using Gaussian mixture model and Markov random field. IEEE Geosci Remote Sens Lett 11 (1):153–157
Li W, Chen C, Su H, Du Q (2015) Local binary patterns and extreme learning machine for hyperspectral imagery classification. IEEE Trans Geosci Remote Sens 53(7):3681–3693
Li W, Prasad S, Fowler JE, Bruce LM (2011) Locality-preserving discriminant analysis in kernel-induced feature spaces for hyperspectral image classification. IEEE Geosci Remote Sens Lett 8(5):894–898
Li W, Prasad S, Fowler JE, Bruce LM (2012) Locality-preserving dimensionality reduction and classification for hyperspectral image analysis. IEEE Trans Geosci Remote Sens 50(4):1185–1198
Ly N, Du Q, Fowler JE (2014) Collaborative graph-based discriminant analysis for hyperspectral imagery. IEEE J Selected Topics Appl Earth Observations Remote Sens 7(6):2688–2696
Ly NH, Du Q, Fowler JE (2014) Collaborative graph-based discriminant analysis for hyperspectral imagery. IEEE J Selected Topics Appl Earth Observations Remote Sens 7(6):2688–2696
Ly N, Du Q, Fowler JE (2014) Sparse Graph-based discriminant analysis for hyperspectral imagery. IEEE Trans Geosci Remote Sens 52(7):3872–3884
Melgani F, Bruzzone L (2004) Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Remote Sens 42(8):1778–1790
Niyogi X (2004) Locality preserving projections. In: Neural information processing systems, vol. 16. MIT, p 153
Plaza A, Martínez P, Plaza J, Pérez R (2005) Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations. IEEE Trans Geosci Remote Sens 3:43
Rohban MH, Rabiee HR (2012) Supervised neighborhood graph construction for semi-supervised classification. Pattern Recogn 45(4):1363–1372
Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2326
Shaw G, Manolakis D (2002) Signal processing for hyperspectral image exploitation. IEEE Signal Process Mag 19:12–16
Su H, Yang H, Du Q, Sheng Y (2011) Semisupervised band clustering for dimensionality reduction of hyperspectral imagery. IEEE Geosci Remote Sens Lett 8 (6):1135–1139
Tenenbaum JB, De Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323
Vapnik V, Vapnik V (1998) Statistical learning theory, vol 1. Wiley, New York
Wright J, Ma Y, Mairal J, Sapiro G, Huang T, Yan S (2010) Sparse representation for computer vision and pattern recognition. Proc IEEE 98(6):1031–1044
Yan S, Xu D, ZHang B, Zhang H, Yang Q, Lin S (2007) Graph embedding and extensions: A general framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40– 51
Zeng D, Xu J, Xu G (2008) Data fusion for traffic incident detector using ds evidence theory with probabilistic svms. J Comput 3(10):36–43
Zhuang L, Gao H, Lin Z, Ma Y, Zhang X, Yu N (2012) Non-negative low rank and sparse graph for semi-supervised learning. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern recognition, Providence, Rhode Island, pp 2328–2335
Acknowledgments
This work was supported by the National Natural Science Foundation of China under Grants No. NSFC-61571033, 61302164, 61501017 and partly by the Fundamental Research Funds for the Central Universities under Grants No. BUCTRC201401, BUCTRC201615, YS1404, XK1521, ZY1504.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Feng, F., Ran, Q. & Li, W. Multi-level fusion of graph based discriminant analysis for hyperspectral image classification. Multimed Tools Appl 76, 22959–22977 (2017). https://doi.org/10.1007/s11042-016-4183-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-016-4183-7