Abstract
Motion object tracking is an important issue in computer vision. In this paper, a robust tracking algorithm based on multiple instance learning (MIL) is proposed. First, a coarse-to-fine search method is designed to reduce the computation load of cropping candidate samples for a new arriving frame. Then, a bag-level similarity metric is proposed to select the most correct positive instances to form the positive bag. The instance’s importance to bag probability is determined by their Mahalanobis distance. Furthermore, an online discriminative classifier selection method, which exploits the average gradient and average weak classifiers strategy to optimize the margin function between positive and negative bags, is presented to solve the suboptimal problem in the process of selecting weak classifiers. Experimental results on challenging sequences show that the proposed method is superior to other compared methods in terms of both qualitative and quantitative assessments.








Similar content being viewed by others
References
Adam A, Rivlin E, Shimshoni I (2006) Robust fragments-based tracking using the integral histogram. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp 798–805
Avidan S (2004) Support vector tracking. IEEE Trans Pattern Anal Mach Intell 26(8):1064–1072
Avidan S (2007) Ensemble tracking. IEEE Trans Pattern Anal Mach Intell 29(2):261–271
Babenko B, Yang M-H, Belongie S (2009) Visual tracking with online multiple instance learning. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 983–990
Chen Y, Bi J, Wang JZ (2006) MILES: multiple-instance learning via embedded instance selection. IEEE Trans Pattern Anal Mach Intell 28(12):1931–1947
Collins RT, Liu Y, Leordeanu M (2005) Online selection of discriminative tracking features. IEEE Trans Pattern Anal Mach Intell 27(10):1631–1643
Comaniciu D, Ramesh V, Meer P (2003) Kernel-based object tracking. IEEE Trans Pattern Anal Mach Intell 25(5):564–577
Elgammal A, Duraiswami R, Davis LS (2003) Probabilistic tracking in joint feature-spatial spaces. In: Proceedings of IEEE computer society conference on computer vision and pattern recognition, pp 781–788
Everingham M, Eslami SA, Van Gool L, Williams CK, Winn J, Zisserman A (2015) The pascal visual object classes challenge: a retrospective. Int J Comput Vis 111(1):98–136
Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 29(5):1189–1232
Grabner H, Grabner M, Bischof H (2006) Real-time tracking via on-line boosting. In: Proceedings of the British Machine Vision Conference, pp 47–56
Grabner H, Leistner C, Bischof H (2008) Semi-supervised on-line boosting for robust tracking. In: European conference on computer vision, pp 234–247
Huang G, Pun C-M, Lin C, Zhou Y (2016) Non-rigid visual object tracking using user-defined marker and Gaussian kernel. Multimedia Tools Appl 75:5473–5492
Jia X, Lu H, Yang M-H (2012) Visual tracking via adaptive structural local sparse appearance model. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 1822–1829
Jiang N, Liu W, Wu Y (2011) Adaptive and discriminative metric differential tracking. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 1161–1168
Kalal Z, Matas J, Mikolajczyk K (2010) K P-N learning: bootstrapping binary classifiers by structural constraints. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 49–56
Kwon J, Lee KM (2010) Visual tracking decomposition. In: Proceedings of IEEE conference on computer vision and pattern recognition, pp 1269–1276
Mei X, Ling H Robust visual tracking using l1 minimization. In: Proceedings of IEEE international conference on computer vision, pp 1436–1443
Ross DA, Lim J, Lin R-S, Yang M-H (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77(1–3):125–141
Viola P, Jones M Rapid object detection using a boosted cascade of simple features. In: Proceedings of IEEE computer vision and pattern recognition, pp 511–518
Wang Z, Wang J, Zhang S, Gong Y (2015) Visual tracking based on online sparse feature learning. Image Vis Comput 38:24–32
Wen J, Chang X-W (2017) The success probability of the Babai point estimator in box-constrained integer linear models. IEEE Trans Inf Theory 63:631–648
Wen J, Li D, Zhu F (2015) Stable recovery of sparse signals via L p -minimization. Appl Comput Harmon Anal 38:161–176
Wen J, Zhou Z, Wang J, Tang X, Mo Q (2017) A sharp condition for exact support recovery of sparse signals with orthogonal matching pursuit. IEEE Trans Signal Process 65:1370–1382
Wu Y, Lim J, Yang M-H (2015) Object tracking benchmark. IEEE Trans Pattern Anal Mach Intell 37(9):1834–1848
Xu C, Tao W, Meng Z, Feng Z (2015) Robust visual tracking via online multiple instance learning with fisher information. Pattern Recogn 48(12):3917–3926
Yilmaz A, Javed O, Shah M (2006) Object tracking: a survey. ACM Comput Surv 38(4):1–45. doi:10.1145/1177352.1177355
Zhang K, Song H (2013) Real-time visual tracking via online weighted multiple instance learning. Pattern Recogn 46(1):397–411
Zhang K, Zhang L, Yang M-H (2013) Real-time object tracking via online discriminative feature selection. IEEE Trans Image Process 22(12):4664–4677
Zhang K, Zhang L, Yang M-H (2014) Fast compressive tracking. IEEE Trans Pattern Anal Mach Intell 36(10):2002–2015
Zhang T, Liu S, Ahuja N, Yang M-H, Ghanem B (2015) Robust visual tracking via consistent low-rank sparse learning. Int J Comput Vis 111(2):171–190. doi:10.1007/s11263-014-0738-0
Zhou Q-H, Lu H, Yang M-H (2011) Online multiple support instance tracking. In: Proceedings of IEEE international conference on automatic face & gesture recognition and workshops, pp 545–552
Zhou T, Lu Y, Qiu M (2015) Online visual tracking using multiple instance learning with instance significanceestimation. arXiv:1501.04378v1:1–5
Acknowledgements
This work was supported by the China Astronautic Science and Technology Innovation Foundation under Grant No. CASC201104, China Aviation Science Fund Project under Grant No. 2012ZC53043 and NSFC under 71471119.The authors would like to thank the valuable comments from the reviewers and editors.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Yang, H., Qu, S. & Zheng, Z. Visual tracking via online discriminative multiple instance metric learning. Multimed Tools Appl 77, 4113–4131 (2018). https://doi.org/10.1007/s11042-017-4498-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-017-4498-z