Abstract
Recently linear Spatial Pyramid Matching (SPM) method based on sparse coding has achieved great success in image classification. The raise of Locality-constrained Linear Coding (LLC) proves the importance of locality. In this paper, we propose an improved feature coding scheme called Locality-constrained Linear Coding Based on Histogram Intersection (HILLC). HILLC uses histogram intersection to describe the distance between feature vector and codebook. For each feature vector, search the KNN nearest neighbors to construct a local codebook. Compared with LLC, HILLC can obtain more robust codes. Experimental results demonstrate that our proposed method outperforms other related coding methods.






Similar content being viewed by others
References
Aharon M, Elad M (2006) Bruckstein The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Trans Signal Process 54(11):4311–4322
Ahonen T, Hadid A, Pietikainen M (2004) Face recognition with local binary patterns. ECCV, pp:469–481
Barla A, Odone F, Verri A (2003) Histogram intersection kernel for image classification. International Conference on Image Processing, 3(2): III-513-16.
Bin G, Victor S (2015) Sheng, Zhijie Wang, Derek Ho, Said Osman, and Shuo Li. Incremental learning for v-Support Vector Regression Neural Networks 67:140–150. doi:10.1016/j.neunet.2015.03.013
Bin G, Victor S, Sheng KYT, Romano W, Li S (2015) Incremental support vector learning for ordinal regression. IEEE Transactions on Neural Networks and Learning Systems 26(7):1403–1416. doi:10.1109/TNNLS.20142342533
Boser BE, Guyon IM, Vapnik VN (1992) A training algorithm for optimal margin classifiers. Proceedings of the fifth annual workshop on computational learning theory, pp. 144-152
Chang CC, Lin CJ (2001) LIBSVM: a library for support vector machines [EB/OL] http://www.csie.ntu.edu.tw/~cjlin/libsvm
Chen Y (2016) Wavelet energy entropy and linear regression classifier for detecting abnormal breasts. Multimedia Tools and Applications. doi:10.1007/s11042-016-4161-0 (Online)
Chen Y, Ma J, Feng Q, Luo L, Shi P, Chen W (2008) Nonlocal prior Bayesian tomographic reconstruction. J Math Imaging and Vision 30(2):133–146
Chen Y, Shi L, Feng Q, Yang J, Shu H, Luo L, Coatrieux J-L, Chen W (2014) Artifact suppressed dictionary learning for low-dose ct image processing. IEEE, Trans Med Imaging 33(12):2271–2292
Chen Y, Zhang Y, Yang J, Cao Q, Yang G, Chen J, Shu H, Luo L, Coatrieux J, Feng Q (2016) Curve-like structure extraction using minimal path propagation with backtracking. IEEE, Trans Image Process 25(2):988–1003
Chen MM, Li Y et al (2016) Morphological analysis of dendrites and spines by hybridization of ridge detection with twin support vector machine. Peer J 4:e2207
Dong Z et al (2015) Magnetic Resonance brain image classification via stationary wavelet Transform and generalized eigenvalue proximal support vector machine. J Med Imaging Health Informatics 5(7):1395–1403
Fei-Fei L, Perona P (2005) A bayesian hierarchical model for learning natural scene categories. IEEE Computer Vision and Pattern Recognition. New York: IEEE, 524–531
Gu B (2015) Et. Al, Incremental learning for ν-support vector regression. Neural Netw 67:140–150
Gu B, Sheng VS (2016) A robust regularization path algorithm for ν-support vector classification, IEEE Transactions on Neural Networks and Learning Systems, doi: 10.1109/TNNLS.2016.2527796
Hartigan JA, Wong MA (1979) Algorithm AS 136: a k-means clustering algorithm. Appl Stat 28(1):100–108
Hornik K (1991) Approximation capabilities of feedforward networks. Neural Netw:251–257
Huang SM, Yang JF (2012) Kernel linear regression for low resolution face recognition under variable illumination, in: IEEE International Conf. on Acoustics, Speech and Signal Processing(ICASP), PP. 1945–1948
Huang SM, Yang JF (2012) Improved principal component regression for face recognition under illumination variations. IEEE Signal Process. Lett. 19(4):179–182
Huang SM, Yang JF (2013) Linear discriminant regression classification for face recognition. IEEE Signal Process Lett 20(1):91–94
Huang SM, Yang JF (2013) Unitary regression classification with total minimum projection error for face recognition. IEEE Signal Process. Lett. 20(5):443–446
Huang GB, Zhu QY, Slew CK (2006) Extreme learning machine: theory and applications. Neurocomputing 70:489–501
Huang GB, Ding XJ, Zhou HM (2010) Optimization method based on extreme learning machine for classification. Neurocomputing 74:155–163
Lazebnik S, Schmid C, Ponce J (2006) Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. IEEE Computer Society Conference on Computer Vision and Pattern Recognition New York, 2169–2178
Lee H, Battle A, Raina R et al (2006) Efficient sparse coding algorithms. Adv Neural Inf Proces Syst:801–808
Leshno M, Lin VY, Pinkus A, Schocken S (1993) Multilayer feedforward networks with a nonpolynomial activation function can approximate any function. Neural Netw (6):861–867
Li LJ, Fei- Fei L (2007) What, where and who? Classifying events by scene and object recognition, Computer Vision, 2007. ICCV 2007. IEEE 11th International Conference on. IEEE, 1–8
Li C-H, Kuo B-C, Lin C-T, Huang C-S (2012) A spatial-contextual support vector machine for remotely sensed image classification. IEEE Trans. Geosci. Remote Sens 50(3):784–799
Li Y, Shao Y, Cattani C (2017) Detection of dendritic spines using wavelet packet entropy and fuzzy support vector machine. CNS Neurol Disord Drug Targets 16(2):116–121
Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110
Lu S Y, Yang J Q (2016) Dual-tree complex wavelet transform and twin support vector machine for pathological brain detection, Appl Sci, 6(6), Article ID: 169
Moustakidis S, Mallinis G, Koutsias N, Theocharis JB, Petridis V (2012) SVM-based fuzzy decision trees for classification of high spatial resolution remote sensing images. IEEE Trans. Geosci, Remote Sens 50(1):149–169
Naseem I, Togneri R, Bennamoun M (2010) Linear regression for face recognition. IEEE Trans Pattern Anal Mach Intell 32(11):2106–2112
Oliva A, Torralba A (2001) Modeling the shape of the scene: a holistic representation of the spatial envelope. Int J Comput Vis 42(3):145–175
Samaria F, Harter A (1994) Parameterisation of a Stochastic Model for Human Face Identification. Proceedings of 2nd IEEE Workshop on Applications of Computer Vision, Sarasota FL, December 1994
Shen F, Tang Z, Jingsong X (2013) Locality constrained representation based classification with spatial pyramid patches. Nenurocomputing 101:104–115
Vapnik VN (1995) The nature of statistical learning theory. Springer, New York
Wang S (2014) Classification of Alzheimer disease based on structural Magnetic Resonance Imaging by kernel support vector machine decision tree. Prog Electromagn Res - Pier 144:185–191
Wang Q (2016) J, Lin, Y. Yuan Salient band selection for hyperspectral image classification via manifold ranking IEEE Trans Neural Netw Learn Syst 27(6):1279–1289
Wang SH, Du SD (2017) Alzheimer’s disease detection by pseudo Zernike moment and linear regression classification. CNS Neurol Disord Drug Targets 16(1):11–15
Wang S, Yang XJ (2015) Identification of green, oolong and black teas in China via wavelet packet entropy and fuzzy support vector machine. Entropy 17(10):6663–6682
Wang J, Yang J, Yu K et al (2010) Locality-constrained linear coding for image classification. Computer Vision and Pattern Recognition (CVPR), 2010 I.E. Conference on. IEEE: 3360–3367
Wen X (2015) Et. Al, A rapid learning algorithm for vehicle classification. Inf Sci 295(1):395–406
Yang J, Yu K, Gong Y, et al (2009) Linear spatial pyramid matching using sparse coding for image classification. Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on IEEE: 1794–1801
Yang W, Wang Z, Sun C (2015) A collaborative representation based projections method for feature extraction. Pattern Recogn 48(1):20–27
Yang W, Wang Z, Zhang B (2016) Face recognition using adaptive local ternary patterns method. Neurocomputing 213:183–190
Yang W, Sun C, Zheng W (2016) A regularized Least Square based discriminative projections for feature extraction, Neurocomputing, 175: 198-205(2016.1)
Yang ZJ, Lu HM et al (2016) Facial emotion recognition based on biorthogonal wavelet entropy, fuzzy support vector machine, and stratified cross validation. IEEE Access 4:8375–8385
Yang W, Sun C, Zheng W, Ricanek K (2017) Gender classification using 3D statistical models. Multimedia Tools and Appl 76(3):4491–4503
Yu K, Zhang T, Gong Y (2009) Efficient sparse coding algorithms. Adv Neural Inf Proces Syst:2223–2231
Yu K, Zhang T, Gong Y (2009) Nonlinear learning using local coordinate coding. Adv Neural Inf Proces Syst:2223–2231
Zhang L, Zhang D (2016) Evolutionary cost-sensitive extreme learning machine. IEEE Trans. Neural Netw. Learn. Syst. doi:10.1109/TNNLS.2016.2607757
Zhang Y et al (2015) Preclinical diagnosis of Magnetic Resonance (MR) brain images via discrete wavelet packet Transform with Tsallis entropy and generalized eigenvalue proximal support vector machine (GEPSVM). Entropy 17(4):1795–1813
Zhang YD et al (2015) Pathological brain detection in MRI scanning by wavelet packet Tsallis entropy and fuzzy support vector machine, SpringerPlus, 4, Article ID: 716
Zhang YD, Zhang Y et al (2017) Seven-layer deep neural network based on sparse autoencoder for voxelwise detection of cerebral microbleed. Multimedia Tools and Applications. doi:10.1007/s11042-017-4554-8 (Online)
Zhou XX, Yang M (2016) Comparison of machine learning methods for stationary wavelet entropy-based multiple sclerosis detection: decision tree, k-nearest neighbors, and support vector machine. Simulation 92(9):861–871
Zhou Z, Wang Y, Jonathan Wu Qm, Yang C, Sun X (2017) Effective and efficient global context verification for image copy detection. IEEE Trans Inf Forensies and Secur 12(1):48–63
Acknowledgements
This project is partly supported by NSF of China (61202134, 31671006), the Natural Science Foundation of Jiangsu Province (No.BK20140638, BK2012437).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chen, H., Xie, K., Wang, H. et al. Scene image classification using locality-constrained linear coding based on histogram intersection. Multimed Tools Appl 77, 4081–4092 (2018). https://doi.org/10.1007/s11042-017-4830-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-017-4830-7