Abstract
The theory of sparse and low-rank representation has worked competitive performance in the field of salient object detection. Generally, the salient object is represented as sparse error while the non-salient region is constrained by the property of low-rank. However, sparsity ignores the global structure which may break up the low-rank property. Besides, the outliers always lead to a poor representation. To handle these problems, this paper proposes a robust representation based on a discriminative dictionary which consists of non-salient and salient templates. Three weight measures are introduced and combined to select the proper templates. The coefficients on dictionary are restricted by ℓ 2,1-norm. Correspondingly, Frobenius norm instead of ℓ 1-norm is exploited to constrain the distribution of representation error. We compare the proposed algorithm against 17 state-of-the-art methods on 4 popular datasets by 6 evaluation metrics and demonstrate the competitive performance in terms of qualitative and quantitative results.







Similar content being viewed by others
Notes
“sample-specific” corruptions mean that some data samples are corrupted and the others are clean [23].
When D is designed to be a full rank matrix, then rank(DZ) = rank(Z). Since F ≈DZ, then rank(D) ≈ rank(Z). So, if F is low-rank, we can obtain that Z is low-rank.
References
Achanta R, Hemami S, Süsstrunk S (2009) Frequency-tuned salient region detection. In: Proc. IEEE CVPR, pp 1597–1604
Achanta R, Shaji A, Smith K, Lucchi A, Fua P, Süsstrunk S (2012) Slic superpixels compared to state-of-the-art superpixel methods. IEEE Trans Pattern Anal Mach Intell 34(11):2274–2281
Alexe B, Deselaers T, Ferrari V (2012) Measuring the objectness of image windows. IEEE Trans Pattern Anal Mach Intell 34(11):2189–2202
Borji A, Itti L (2012) Exploiting local and global patch rarities for saliency detection. In: Proc IEEE CVPR, pp 478–485
Borji A, Cheng M M, Jiang H, Li J (2015) Salient object detection: a benchmark. IEEE Trans Image Process 24(12):5706–5722
Chang X, Yang Y, Xing E P, Yu Y L (2015) Complex event detection using semantic saliency and nearly-isotonic svm. In: Proc. ICML
Chang X, Yu YL, Yang Y, Xing EP (2016) Semantic pooling for complex event analysis in untrimmed videos. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2016.2608901
Chang X, Ma Z, Yang Y, Zeng Z, Hauptmann A G (2017) Bi-level semantic representation analysis for multimedia event detection. IEEE Trans Cybern 47(5):1180–1197
Chang X, Ma Z, Lin M, Yang Y, Hauptmann A (2017) Feature interaction augmented sparse learning for fast kinect motion detection. IEEE Trans Image Process. https://doi.org/10.1109/TIP.2017.2708506
Cheng M M, Warrell J, Lin W Y, Zheng S, Vineet V, Crook N (2013) Efficient salient region detection with soft image abstraction. In: Proc. IEEE ICCV, pp 1529–1536
Cheng M M, Mitra N J, Huang X, Torr P H S, Hu S (2015) Global contrast based salient region detection. IEEE Trans Pattern Anal Mach Intell 37(3):569–582
Gao Z, Cheong L F, Wang Y X (2014) Block-sparse rpca for salient motion detection. IEEE Trans Pattern Anal Mach Intell 36(10):1975–1987
Hou X, Zhang L (2008) Dynamic visual attention: searching for coding length increments. In: NIPS, pp 681–688
Jiang B, Zhang L, Lu H, Yang C, Yang M H (2013) Saliency detection via absorbing Markov chain. In: Proc. IEEE ICCV, pp 1665–1672
Kim J, Han D, Tai Y, Kim J (2014) Salient region detection via high-dimensional color transform. In: Proc IEEE CVPR, pp 883–890
Lang C, Liu G, Yu J, Yan S (2012) Saliency detection by multitask sparsity pursuit. IEEE Trans Image Process 21(3):1327–1338
Lee B S, Lau C T, Chen Z, Lin C W (2012) Bottom-up saliency detection model based on human visual sensitivity and amplitude spectrum. IEEE Trans Multimed 14(1):187–198
Li X, Lu H, Zhang L, Ruan X, Yang M H (2013) Saliency detection via dense and sparse reconstruction. In: Proc. IEEE ICCV, pp 2976–2983
Li H, Lu H, Lin Z, Shen X, Price B (2015) Inner and inter label propagation: salient object detection in the wild. IEEE Trans Image Process 24(10):3176–3186
Li P, Bu J, Yu J, Chen C (2016) Towards robust subspace recovery via sparsity-constrained latent low-rank representation. J Vis Commun Image Represent 37:46–52
Lin Z, Liu R, Su Z (2011) Linearized alternating direction method with adaptive penalty for low-rank representation. In: NIPS, pp 612–620
Liu J, Ji S, Ye J (2009) Multi-task feature learning via efficient ℓ 2,1 norm minimization. In: UAI
Liu G, Lin Z, Yu Y (2010) Robust subspace segmentation by low-rank representation. In: Proc ICML, pp 663–670
Liu T, Yuan Z, Sun J, Wang J, Zheng N, Tang X, Shum H (2011) Learning to detect a salient object. IEEE Trans Pattern Anal Mach Intell 33(2):353–367
Ma Z, Chang X, Yang Y, Sebe N, Hauptmann A (2017) The many shades of negativity. IEEE Trans Multimed 19(7):1558–1568
Mahadevan V, Vasconcelos N (2009) Saliency-based discriminant tracking. In: Proc IEEE CVPR, pp 1007–1013
Margolin R, Tal A, Zelnik-Manor L (2013) What makes a patch distinct? In: Proc IEEE CVPR, pp 1139–1146
Peng Y, Ganesh A, Wright J, Xu W, Ma Y (2012) Rasl: robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Trans Pattern Anal Mach Intell 34(11):2233–2246
Peng H, Li B, Ling H, Hu W, Xiong W, Maybank SJ (2016) Salient object detection via structured matrix decomposition. IEEE Trans Pattern Anal Mach Intell. https://doi.org/10.1109/TPAMI.2016.2562626
Perazzi F, Krähenbühl P, Pritch Y, Hornung A (2012) Saliency filters: contrast based filtering for salient region detection. In: Proc IEEE CVPR, pp 733–740
Rabinovich A, Vedaldi A, Galleguillos C, Wiewiora E, Belongie S (2007) Objects in context. In: Proc IEEE ICCV, pp 1–8
Ren W Robust dictionary based data representation (Technical report, 2015. Preprint arXiv:1512.03617)
Sharma G, Jurie F, Schmid C (2012) Discriminative spatial saliency for image classification. In: Proc IEEE CVPR, pp 3506–3513
Shen X, Wu Y (2012) A unified approach to salient object detection via low rank matrix recovery. In: Proc IEEE CVPR, pp 853–860
Shi J, Yan Q, Xu L, Jia J (2016) Hierarchical image saliency detection on extended cssd. IEEE Trans Pattern Anal Mach Intell 38(4):717–729
Souly N, Shah M (2016) Visual saliency detection using group lasso regularization in videos of natural scenes. Int J Comput Vis 117(1):93–110
Sun J, Lu H, Liu X (2015) Saliency region detection based on Markov absorption probabilities. IEEE Trans Image Process 24(5):1639–1649
Tong N, Lu H, Zhang Y, Ruan X (2015) Salient object detection via global and local cues. Pattern Recognit 48:3258–3267
Wang J, Yang J, Yu K, Lv F, Huang T, Gong Y (2010) Locality-constrained linear coding for image classification. In: Proc. IEEE CVPR, pp 3360–3367
Wang W, Yan Y, Winkler S, Sebe N (2016) Category specific dictionary learning for attribute specific feature selection. IEEE Trans Image Process 25(3):1465–1478
Wang W, Yan Y, Zhang L, Hong R, Sebe N (2016) Collaborative sparse coding for multiview action recognition. IEEE MultiMedia 23(4):80–87
Xie Y, Lu H, Yang M M (2013) Bayesian saliency via low and mid level cues. IEEE Trans Image Process 22(5):1689–1698
Yan J, Zhu M, Liu H, Liu Y (2010) Visual saliency detection via sparsity pursuit. IEEE Signal Process Lett 17(8):739–742
Yan Y, Yang Y, Meng D, Liu G, Tong W, Hauptmann A G, Sebe N (2015) Event oriented dictionary learning for complex event detection. IEEE Trans Image Process 24(6):1867–1878
Yan Y, Ricci E, Subramanian R, Liu G, Lanz O, Sebe N (2016) A multi-task learning framework for head pose estimation under target motion. IEEE Trans Pattern Anal Mach Intell 38(6):1070– 1083
Yan Y, Nie F, Li W, Gao C, Yang Y, Xu D (2016) Image classification by cross-media active learning with privileged information. IEEE Trans Multimed 18 (12):2494–2502
Yang M, Zhang L, Yang J, Zhang D (2013) Regularized robust coding for face recognition. IEEE Trans Image Process 22(5):1753–1766
Yang C, Zhang L, Lu H, Ruan X, Yang M H (2013) Saliency detection via graph-based manifold ranking. In: Proc IEEE CVPR, pp 3166–3173
Zhang J, Sclaroff S (2013) Saliency detection: a Boolean map approach. In: Proc IEEE ICCV, pp 153–160
Zhang J, Sclaroff S, Lin Z, Shen X, Price B, Mĕch R (2015) Minimum barrier salient object detection at 80fps. In: Proc IEEE ICCV
Zhang L, Li X, Nie L, Yang Y, Xia Y (2016) Weakly supervised human fixations prediction. IEEE Trans Cybern 46(1):258–269
Zhang D, Han J, Jiang L, Ye S, Chang X (2017) Revealing event saliency in unconstrained video collection. IEEE Trans Image Process 26(4):1746–1758
Zhang T, Liu S, Ahuja N, Yang M H, Ghanem B (2015) Robust visual tracking via consistent low-rank sparse learning. Int J Comput Vis 111(2):171–190
Zhao M, Jiao L, Feng J, Liu T (2014) A simplified low rank and sparse graph for semi-supervised learning. Neurocomputing 140:84–96
Zhou X, Yang C, Yu W (2013) Moving object detection by detecting contiguous outliers in the low-rank representation. IEEE Trans Pattern Anal Mach Intell 35(3):597–610
Zou W, Kpalma K, Liu Z, Ronsin J (2013) Segmentation driven low-rank matrix recovery for saliency detection. In: Proc BMVC
Acknowledgments
This research was partially supported by National Natural Science Foundation of China under project No. 61403403, No. 71673293 and China Postdoctoral Science Foundation under project No. 2015M52707.
Author information
Authors and Affiliations
Corresponding author
Additional information
Huaxin Xiao and Weiya Ren has an equal contribution.
Rights and permissions
About this article
Cite this article
Xiao, H., Ren, W., Wang, W. et al. Salient object detection via robust dictionary representation. Multimed Tools Appl 77, 3317–3337 (2018). https://doi.org/10.1007/s11042-017-5118-7
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11042-017-5118-7