Skip to main content
Log in

A utility of pores as level 3 features in latent fingerprint identification

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Latent fingerprint identification is the most prevalent process used by the forensic community from a long time. Smudgy, blurred, and small fingerprint area of the latent impressions results into the deficiency of the level 2 features i.e. minutiae. Most of the commercially available Automated Fingerprint Identification Systems (AFISs) which mainly dependent on minutiae; seems less efficient in latent fingerprint matching. In this paper, the usefulness of pores (level 3 features) besides minutiae in latent fingerprint matching is examined. An algorithm based on Lindeberg’s automatic scale selection method is proposed for pores extraction in latent fingerprints. The fusion of pores and minutiae at score level is used to re-rank the minutiae based latent matcher. The effectiveness of the proposed algorithm and pores utility are evaluated by observing and comparing the latent recognition accuracy obtained for minutiae matching and matching after fusion. Both minutiae and pores are automatically extracted in latent and reference fingerprints. The experimental results show that the fusion significantly improves the latent recognition rate in comparison to the minutiae matching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Abraham J, Kwan P, Gao J (2011) Fingerprint matching using a hybrid shape and orientation descriptor. In State of the art in Biometrics 25–56

  2. Agarwal D, Bansal A (2020) Fingerprint pores extraction by using automatic scale selection. Int J Biometeorol 12:317. https://doi.org/10.1504/IJBM.2020.10030180

    Article  Google Scholar 

  3. Asai K, Izumisawa H, Owada K, Kinoshita S, Matsuno S (1987) Method and device for matching fingerprints with precise minutia pairs selected from coarse pairs. US Patent No 4,646,352

  4. Ashbaugh DR (1999) Quantitative-qualitative friction ridge analysis: an introduction to basic and advanced Ridgeology. CRC Press

  5. Cappelli R, Ferrara M, Maltoni D (2010) Minutia cylinder-code: a new representation and matching technique for fingerprint recognition. IEEE Trans Pattern Anal Mach Intell 32(12):2128–2141

    Article  Google Scholar 

  6. CDEFFS (2008) ANSI/NIST-CDEFFS group, data format for the interchange of extended fingerprint and palmprint features-addendum to ANSI/NIST-ITL 1-2007, ANSI/NIST Draft Version 0.2. http://fingerprint.nist.gov/standard/cdeffs. Accessed 17 December 2019

  7. Champod C, Lennard C, Margot P, Stoilovic M (2004) Fingerprints and other ridge skin impressions. CRC Press, Boca Raton

    Book  Google Scholar 

  8. Chen Y, Jain AK (2007) Dots and Incipients: extended features for partial fingerprint matching. Proc. biometrics Symp 1-6

  9. Chen X, Tian J, Yang X (2006) A new algorithm for distorted fingerprints matching based on normalized fuzzy similarity measure. IEEE Trans Image Process 15(3):767–776

    Article  Google Scholar 

  10. Cui J, Ra M-S, Kim W-Y (2014) Fingerprint pore matching method using polar histogram. In proceedings of 18th IEEE international symposium on consumer electronics (ISCE 2014). IEEE 1-2

  11. Dahia G, Segundo MP (2018) Improving fingerprint pore detection with a small FCN. arXiv preprint arXiv:1811.06846

  12. Dvornychenko VN, Garris MD (2006) Summary of NIST latent fingerprint testing workshop. NISTIR 7377

  13. Feng J (2008) Combining minutiae descriptors for fingerprint matching. Pattern Recogn 41(1):342–352

    Article  Google Scholar 

  14. Feng J, Jain AK (2008) Filtering large fingerprint database for latent matching. In 19th international conference on pattern recognition 1-4 IEEE

  15. Fishler M, Bolles R (1981) Random Sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun ACM 24(6):381–395

    Article  MathSciNet  Google Scholar 

  16. Garris MD, McCabe R (2000) NIST special database 27 fingerprint minutiae from latent and matching Tenprint images. https://doi.org/10.6028/NIST.IR.6534.

  17. Gonzales R, Woods R, Eddins S (2004) Digital image processing with MATLAB. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  18. Gu J, Zhou J, Yang C (2006) Fingerprint recognition by combining global structure and local cues. IEEE Trans Image Process 15(7):1952–1964

    Article  Google Scholar 

  19. Hong L, Wan Y, Jain AK (1998) Fingerprint image enhancement: algorithm and performance evaluation. IEEE Trans Pattern Anal Mach Intell 20(8):777–789

    Article  Google Scholar 

  20. Hrechak AK, McHugh JA (1990) Automated fingerprint recognition using structural matching. Pattern Recogn 23(8):893–904

    Article  Google Scholar 

  21. International Biometric Group (IBG) (2008) Analysis of level 3 features at high resolutions: Phase II—Final Report technical report

  22. Jain AK, Feng J (2010) Latent fingerprint matching. IEEE Trans Pattern Anal Mach Intell 33(1):88–100

    Article  Google Scholar 

  23. Jain AK, Chen Y, Demirkus M (2006) Pores and ridges: high-resolution fingerprint matching using level 3 features. IEEE Trans Pattern Anal Mach Intell 29(1):15–27

    Article  Google Scholar 

  24. Jain AK, Feng J, Nagar A, Nandakumar A (2008) On matching latent fingerprints. IEEE Comput Soc Conf Comput Vis Pattern Recognit Workshops 1–8

  25. Jang H, Kim D, Mun S, Choi S, Lee H (2017) Deep pore: fingerprint pores extraction using deep convolution neural networks. IEEE Signal Process Lett 24(12):1808–1812

    Article  Google Scholar 

  26. Jea TY, Govindaraju V (2005) A minutia-based partial fingerprint recognition system. Pattern Recogn 38(10):1672–1684

    Article  Google Scholar 

  27. Jiang X, Yau WY (2000) Fingerprint minutiae matching based on the local and global structures. In Proc. 15th Int’l Conf. Pattern recognition 1038–1041

  28. Komarinski P (2005) Automated fingerprint identification systems (AFIS). Elsevier Academic Press, Burlington

    Google Scholar 

  29. Kryszczuk K, Drygajlo A, Morier P (2004) Extraction of level 2 and level 3 features for fragmentary fingerprints. Proc. second COST action 275 workshop 83-88

  30. Kwan PW, Gao J, Guo Y (2006). Fingerprint matching using enhanced shape context. In proceedings of the 21st Image and Vision Computing New Zealand (IVCNZ 2006) Great Barrier Island, New Zealand 1(1): 115–120

  31. Labati RD, Genovese A, Muñoz E, Piuri V, Scotti F (2018) A novel pore extraction method for heterogeneous fingerprint images using convolutional neural networks. Pattern Recogn Lett 113:58–66

    Article  Google Scholar 

  32. Lee HC, Gaensslen RE (1991) Advances in fingerprint technology. Elsevier CRC Press, Boca Raton

    Google Scholar 

  33. Lindeberg T (1998) Feature detection with automatic scale selection. Int J Comput Vis 30(2):79–116

    Article  Google Scholar 

  34. Liu F, Zhao Q, Zhang L, Zhang D (2010) Fingerprint pore matching based on sparse representation. In 2010 20th International Conference on Pattern Recognition 1630–1633 IEEE

  35. Liu F, Zhao Q, Zhang D (2011) A novel hierarchical fingerprint matching approach. Pattern Recogn 44(8):1604–1613

    Article  Google Scholar 

  36. Liu F, Zhao Q, Zhang D (2020). Fingerprint pore extraction. In advanced fingerprint recognition: from 3D shape to ridge detail. Springer, Singapore 107-138

  37. Liu F, Zhao Q, Zhang D (2020) Fingerprint pore matching. In Advanced fingerprint recognition: from 3D shape to ridge detail 165–187. Springer, Singapore

  38. Liu F, Zhao Y, Liu G, Shen L (2020) Fingerprint pore matching using deep features. Pattern Recogn 102:107208

    Article  Google Scholar 

  39. Maltoni D, Maio D, Jain AK, Prabhakar S (2003) Handbook of fingerprint recognition. Springer-Verlag, London

    MATH  Google Scholar 

  40. Mngenge NA, Nelufule NN, Nelwamondo FV, Msimang N (2012) Fingerprint pores extractor. National Conference on Computing and Communication Systems (NCCCS) 1–5

  41. Mura V, Ghiani L, Marcialis GL et al (2015) LivDet 2015 fingerprint Liveness detection competition 2015. 7th IEEE Int. Conf. On biometrics: theory, applications and systems (BTAS), Arlington, VA 1-6

  42. Nguyen DL, Jain AK (2019) End-to-End Pore Extraction and Matching in Latent Fingerprints: Going Beyond Minutiae arXiv preprint arXiv: 1905.11472

  43. Parsons NR, Smith JQ, Thonnes E, Wang L, Wilson RG (2008) Rotationally invariant statistics for examining the evidence from the pores in fingerprints. Law Probab Risk 7(1):1–14

    Article  Google Scholar 

  44. Paulino AA, Feng J, Jain AK (2012) Latent fingerprint matching using descriptor-based hough transform. IEEE Trans Inf Forensics Secur 8(1):31–45

    Article  Google Scholar 

  45. Qi J, Yang S, Wang Y (2005) Fingerprint matching combining the global orientation field with minutia. Pattern Recogn Lett 26(15):2424–2430

    Article  Google Scholar 

  46. Ramírez-Sáyago E, Loyola-González O, Medina-Pérez MA (2020) Towards inpainting and denoising latent fingerprints: a study on the impact in latent fingerprint identification. In Mexican conference on pattern recognition 76–86. Springer, Cham

  47. Ratha NK, Bolle RM, Pandit VD, Vaish V (2000) Robust fingerprint authentication using local structural similarity 29–34

  48. Ray M, Meenen P, Adhami R (2005) A novel approach to fingerprint pore extraction. Proceedings of the 37th south-eastern symposium on system theory 282–286

  49. Rutovitz D (1966) Pattern recognition. J Ro Stat Soc 129:504–530

    Article  Google Scholar 

  50. Sanchez AJ, Romero LF, Peralta D, Medina-Pérez MA, Saeys Y, Herrera F, Tabik S (2020) Asynchronous processing for latent fingerprint identification on heterogeneous CPU-GPU systems. IEEE Access 8:124236–124253. https://doi.org/10.1109/ACCESS.2020.3005476

    Article  Google Scholar 

  51. Sankaran A, Dhamecha T I, Vatsa M, Singh R (2011) On matching latent to latent fingerprints. In 2011 international joint conference on biometrics (IJCB). IEEE 1-6

  52. Singla N, Kaur M, Sofat S (2020) Automated latent fingerprint identification system: a review. Forensic Sci Int 309:110187

    Article  Google Scholar 

  53. Stosz J, Alyea L (1994) Automated system for fingerprint authentication using pores and ridge structure. Proc SPIE 22(77):210–223

    Article  Google Scholar 

  54. Su HR, Chen KY, Wong WJ, Lai S H (2017) A deep learning approach towards pore extraction for high-resolution fingerprint recognition. In 2017 IEEE international conference on acoustics, speech and signal processing (ICASSP) 2057-2061

  55. Sun Y, Liang D, Wang X, Tang X (2015) Deepid3: face recognition with very deep neural networks. arXiv preprint arXiv:1502.00873

  56. Teixeira RFS, Leite NJ (2014) Improving pore extraction in high resolution fingerprint images using spatial analysis. IEEE international conference on image processing (ICIP) 4962–4966

  57. Tico M, Kuosmanen P (2003) Fingerprint matching using an orientation-based minutia descriptor. IEEE Trans Pattern Anal Mach Intell 25(8):1009–1014

    Article  Google Scholar 

  58. Wahab A, Chin SH, Tan EC (1998) Novel approach to automated fingerprint recognition. IEEE Proc Vis Image Signal Process 145(3):160–166

    Article  Google Scholar 

  59. Wan D, Zhou J (2006) Fingerprint recognition using model-based density map. IEEE Trans Image Process 15(6):1690–1696

    Article  Google Scholar 

  60. Wang H, Yang X, Ma L, Liang R (2017) Fingerprint pore extraction using U-net based fully convolutional network. In: Zhou J et al (eds) CCBR 2017, LNCS, vol 10568. Springer, Cham, pp 279–287

    Google Scholar 

  61. Zhao Q, Jain AK (2010) On the utility of extended fingerprint features: a study on pores. IEEE computer society conference on computer vision and pattern recognition-workshops 9-16

  62. Zhao Q, Zhang L, Zhang D, Luo N (2009) Direct pore matching for fingerprint recognition. In: International conference on biometrics 597–606. Springer, Berlin, Heidelberg

  63. Zhao Q, Zhang D, Zhang L, Luo N (2010) High resolution partial fingerprint alignment using pore-valley descriptors. Pattern Recogn 43(3):1050–1061

    Article  Google Scholar 

  64. Zhao Q, Zhang D, Zhang L, Luo N (2010) Adaptive fingerprint pore modeling and extraction. Pattern Recogn 43(8):2833–2844

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diwakar Agarwal.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agarwal, D., Bansal, A. A utility of pores as level 3 features in latent fingerprint identification. Multimed Tools Appl 80, 23605–23624 (2021). https://doi.org/10.1007/s11042-020-10207-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-020-10207-x

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy