Skip to main content
Log in

RETRACTED ARTICLE: Image denoising and despeckling methods for SAR images to improve image enhancement performance: a survey

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

This article was retracted on 27 July 2024

This article has been updated

Abstract

The synthetic aperture radar (SAR) images are playing an essential role in remote sensing. Various types of internal, external, and environmental noise are affecting the SAR images. Coherent speckle noise is the primary source of noise in SAR images. Such noise can be removed by using a single filter or combination of filters and transform signals. SAR image denoising has been attracting the attention of researchers for the past three decades. The target area and application type are influencing the choice of denoising method. In this paper, the basics of SAR imaging, steps in the pipeline of SAR despeckling process, filters like Lee filter, Frost filter, Kuan Filter and Gamma Maximum a posteriori (MAP) filter, various state of the art despeckling methods and deep learning approaches for SAR despeckling are discussed. Five transforms for despeckling are discussed with literature. The data sets from different radars, the applications, area of importance, and the quality metrics used to evaluate the despeckling quality are discussed in detail that has been available in the literature of the past two decades.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

References

  1. Aiazzi B, Alparone L, Baronti S (1998) Multiresolution local-statistics speckle filtering based on a ratio laplacian pyramid. IEEE Trans Geosci Remote Sens 36(5):1466–1476

    Article  Google Scholar 

  2. Al-Zuhairi M, Nahhas F, Hussein F, Pradhan B, Shariff R (2016) A refined classification approach by integrating landsat operational land imager (oli) and radarsat-2 imagery for land-use and land-cover mapping in a tropical area. Int J Remote Sens 37:2358–2375

    Article  Google Scholar 

  3. Amirmazlaghani M, Amindavar H (2012) A novel sparse method for despeckling sar images. IEEE Trans Geosci Remote Sens 50(12):5024–5032

    Article  Google Scholar 

  4. Argenti F, Alparone L (2002) Speckle removal from sar images in the undecimated wavelet domain. IEEE Trans Geosci Remote Sens 40(11):2363–2374

    Article  Google Scholar 

  5. Argenti F, Bianchi T, Lapini A, Alparone L (2012) Fast map despeckling based on laplacian–gaussian modeling of wavelet coefficients. IEEE Geosci Remote Sens Lett 9(1):13–17

    Article  Google Scholar 

  6. Bamler R (2000) Principles of synthetic aperture radar. Surv Geophys 21(2):147–157

    Article  Google Scholar 

  7. Bhuiyan MIH, Ahmad MO, Swamy MNS (2007) Spatially adaptive wavelet-based method using the cauchy prior for denoising the sar images. IEEE Trans Circ Syst Video Technol 17(4):500–507

    Article  Google Scholar 

  8. Bhuiyan MIH, Ahmad MO, Swamy MNS (2007) Spatially adaptive wavelet-based method using the cauchy prior for denoising the sar images. IEEE Trans Circ Syst Video Technol 17(4):500–507

    Article  Google Scholar 

  9. Borran MJ, Nowak RD (2001) Wavelet-based denoising using hidden markov models. In: 2001 IEEE international conference on acoustics, speech, and signal processing. Proceedings (Cat. No.01CH37221), vol 6, pp 3925–3928

  10. Chierchia G, Cozzolino D, Poggi G, Verdoliva L (2017) Sar image despeckling through convolutional neural networks. In: 2017 IEEE international geoscience and remote sensing symposium (IGARSS), pp 5438–5441

  11. Cozzolino D, Verdoliva L, Scarpa G, Poggi G (2019) Nonlocal sar image despeckling by convolutional neural networks. In: IGARSS 2019–2019 IEEE international geoscience and remote sensing symposium, pp 5117–5120

  12. Cozzolino D, Verdoliva L, Scarpa G, Poggi G (2020) Nonlocal cnn sar image despeckling. Remote Sens 12(6):1–22

    Article  Google Scholar 

  13. Dai M, Peng C, Chan A K, Loguinov D (2004) Bayesian wavelet shrinkage with edge detection for sar image despeckling. IEEE Trans Geosci Remote Sens 42(8):1642–1648

    Article  Google Scholar 

  14. Dalsasso E, Denis L, Tupin F (2020) Sar2sar: a self-supervised despeckling algorithm for sar images

  15. Damseh RR, Ahmad MO (2016) A low-complexity mmse bayesian estimator for suppression of speckle in sar images. In: 2016 IEEE international symposium on circuits and systems (ISCAS), pp 1002–1005

  16. de Fatima Carvalho Ferreira A, Fernandes D (2000) Speckle filter for weibull-distributed sar images. In: IGARSS 2000. IEEE 2000 international geoscience and remote sensing symposium. Taking the pulse of the planet: the role of remote sensing in managing the environment. Proceedings (Cat. No.00CH37120), vol 2, pp 642–644

  17. Deledalle C, Denis L, Tabti S, Tupin F (2017) Mulog, or how to apply gaussian denoisers to multi-channel sar speckle reduction? IEEE Trans Image Process 26(9):4389–4403

    Article  MathSciNet  Google Scholar 

  18. Di Martino G, Poderico M, Poggi G, Riccio D, Verdoliva L (2014) Benchmarking framework for sar despeckling. IEEE Trans Geosci Remote Sens 52(3):1596–1615

    Article  Google Scholar 

  19. Di Martino G, Di Simone A, Iodice A, Poggi G, Riccio D, Verdoliva L (2016) Scattering-based sarbm3d. IEEE J Sel Top Appl Earth Obs Remote Sens 9(6):2131–2144

    Article  Google Scholar 

  20. Domg Y, Milne AK, forster BC (2001) Toward edge sharpening: a sar speckle filtering algorithm. IEEE Trans Geosci Remote Sens 39(4):851–863

    Article  Google Scholar 

  21. Espinoza Molina D, Gleich D, Datcu M (2010) Gibbs random field models for model-based despeckling of sar images. IEEE Geosci Remote Sens Lett 7(1):73–77

    Article  Google Scholar 

  22. Farhangi N, Ghofrani S (2018) Using bayesshrink, bishrink, weighted bayesshrink, and weighted bishrink in nsst and swt for despeckling sar images. EURASIP J Image Video Process 2018(1):4

    Article  Google Scholar 

  23. Ferraioli G, Pascazio V, Vitale S (2019) A novel cost function for despeckling using convolutional neural networks. In: 2019 Joint urban remote sensing event (JURSE), pp 1–4

  24. Forte A (1988) Optimized techniques to reduce speckle in sar images. In: 1988 18th European microwave conference, pp 699–704

  25. Foucher S (2008) Sar image filtering via learned dictionaries and sparse representations. In: IGARSS 2008–2008 IEEE international geoscience and remote sensing symposium, vol 1, pp I–229–I–232

  26. Foucher S, Benie G B, Boucher J (2001) Multiscale map filtering of sar images. IEEE Trans Image Process 10(1):49–60

    Article  Google Scholar 

  27. Frost VS, Stiles JA, Shanmugan KS, Holtzman JC (1982) A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans on Pattern Anal Mach Intell PAMI-4(2):157–166

    Article  Google Scholar 

  28. Gao F, Xue X, Sun J, Wang J, Zhang Y (2016) A sar image despeckling method based on two-dimensional s transform shrinkage. IEEE Trans Geosci Remote Sens 54(5):3025–3034

    Article  Google Scholar 

  29. Gao F, Zhang Y, Wang J, Sun J (2016) Fast algorithm for inverse two-dimensional s transform and its application in time-frequency filtering for sar image despeckling. Chin J Electron 25(1):100–105

    Article  Google Scholar 

  30. Gleich D, Datcu M (2009) Wavelet-based sar image despeckling and information extraction, using particle filter. IEEE Trans Image Process 18(10):2167–2184

    Article  MathSciNet  Google Scholar 

  31. Gragnaniello D, Poggi G, Scarpa G, Verdoliva L (2015) Sar despeckling based on soft classification. In: 2015 IEEE International geoscience and remote sensing symposium (IGARSS), pp 2378–2381

  32. Gui Y, Xue L, Li X (2018) Sar image despeckling using a dilated densely connected network. Remote Sens Lett 9:857–866

    Article  Google Scholar 

  33. Guo H, Odegard JE, Lang M, Gopinath RA, Selesnick IW, Burrus CS (1994) Wavelet based speckle reduction with application to sar based atd/r. In: Proceedings of 1st international conference on image processing, vol 1, pp 75–79

  34. Hazarika D, Nath VK, Bhuyan M (2016) Sar image despeckling based on combination of laplace mixture distribution with local parameters and multiscale edge detection in lapped transform domain. Procedia Comput Sci 87:140–147

    Article  Google Scholar 

  35. Hazarika D, Nath VK, Bhuyan M (2016) Speckle removal from sar images in the lapped transform domain using adaptive threshold based on despeckling evaluation indexes. Procedia Comput Sci 87:148–155. Fourth international conference on recent trends in computer science & engineering (ICRTCSE 2016)

    Article  Google Scholar 

  36. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR), pp 770–778

  37. Holbek-Hanssen E, Tjelmeland H, Johennessen OM, Olaussen T, Karpuz R (1989) Speckle reduction and maximum likelihood classification of sar images from sea ice recorded during mizex 87. In: 12th Canadian symposium on remote sensing geoscience and remote sensing symposium, vol 2, pp 755–758

  38. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ (2017) Densely connected convolutional networks. In: 2017 IEEE conference on computer vision and pattern recognition (CVPR), pp 2261–2269

  39. Ji J, Li Y (2016) An improved sar image denoising method based on bootstrap statistical estimation with ica basis. Chin J Electron 25(4):786–792

    Article  Google Scholar 

  40. Jidesh P, Banothu B (2018) Image despeckling with non-local total bounded variation regularization. Comput Electr Eng 70:631–646

    Article  Google Scholar 

  41. Kuan DT, Sawchuk AA, Strand TC, Chavel P (1985) Adaptive noise smoothing filter for images with signal-dependent noise. IEEE Trans Pattern Anal Mach Intell PAMI-7(2):165–177

    Article  Google Scholar 

  42. Lee J-S (1981) Refined filtering of image noise using local statistics. Comput Graph Image Process 15(4):380–389

    Article  Google Scholar 

  43. Li Y, Gong H, Feng D, Zhang Y (2011) An adaptive method of speckle reduction and feature enhancement for sar images based on curvelet transform and particle swarm optimization. IEEE Trans Geosci Remote Sens 49 (8):3105–3116

    Article  Google Scholar 

  44. Li H, Hong W, Wu Y, Fan P (2013) Bayesian wavelet shrinkage with heterogeneity-adaptive threshold for sar image despeckling based on generalized gamma distribution. IEEE Trans Geosci Remote Sens 51(4):2388–2402

    Article  Google Scholar 

  45. Li J, Li Y, Xiao Y, Bai Y (2019) Hdranet: hybrid dilated residual attention network for sar image despeckling. Remote Sens 11:2921

    Article  Google Scholar 

  46. Liu J, Huang T-Z, Liu G, Wang S, Lv X-G (2016) Total variation with overlapping group sparsity for speckle noise reduction. Neurocomputing 216:502–513

    Article  Google Scholar 

  47. Liu S, Geng P, Shi M, Fang J, Hu S (2016) SAR image de-noising based on generalized non-local means in non-subsample shearlet domain, vol 386, pp 221–229

  48. Liu S, Liu M, Li P, Zhao J, Zhu Z, Wang X (2017) Sar image denoising via sparse representation in shearlet domain based on continuous cycle spinning. IEEE Trans Geosci Remote Sens 55(5):2985–2992

    Article  Google Scholar 

  49. Ma X, Wang C, Yin Z, Wu P (2020) Sar image despeckling by noisy reference-based deep learning method. IEEE Trans Geosci Remote Sens 58(12):8807–8818

    Article  Google Scholar 

  50. Mancini P, Griffiths H D (1989) Speckle reduction by spatial filtering. In: IEE colloquium on synthetic aperture radar, pp 8/1–8/6

  51. Martin DTD, Fowlkes C, Malik J (2001) A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the 8th international conference on computer vision, vol 37, pp 416–423

  52. Moussa O, Khlifa N, Abdallah NB (2018) Video despeckling using shearlet tensor-based anisotropic diffusion. Comput Aided Geom Des 67:34–46

    Article  MathSciNet  Google Scholar 

  53. MuraliMohanBabu Y, Subramanyam MV, GiriPrasad MN (2015) A modified bm3d algoriurlthm for sar image despeckling. Procedia Comput Sci 70:69–75. Proceedings of the 4th international conference on eco-friendly computing and communication systems

    Article  Google Scholar 

  54. Namdeo NCA, Vishwakarma A (2015) Survey paper on despeckling of sar images on different transform domain. Int J Sci Res 4(6):415–417

    Google Scholar 

  55. Nasri M, Nezamabadi-Pour H (2009) Image denoising in the wavelet domain using a new adaptive thresholding function. Neurocomputing 72(4):1012–1025. Brain inspired cognitive systems (BICS 2006)/Interplay between natural and artificial computation (IWINAC 2007)

    Article  Google Scholar 

  56. Nie X, Qiao H, Zhang B, Huang X (2016) A nonlocal tv-based variational method for polsar data speckle reduction. IEEE Trans Image Process 25(6):2620–2634

    Article  MathSciNet  Google Scholar 

  57. Nie X, Huang X, Feng W (2017) A new nonlocal tv-based variational model for sar image despeckling based on the g0 distribution. Digit Signal Process 68:44–56

    Article  Google Scholar 

  58. Ojha C, Fusco A, Manunta M (2015) Denoising of full resolution differential sar interferogram based on k-svd technique. In: 2015 IEEE international geoscience and remote sensing symposium (IGARSS), pp 2461–2464

  59. Ozcan C, Sen B, Nar F (2016) Sparsity-driven despeckling for sar images. IEEE Geosci Remote Sens Lett 13(1):115–119

    Article  Google Scholar 

  60. Qiu F, Berglund J, Jensen JR, Thakkar P, Ren D (2004) Speckle noise reduction in sar imagery using a local adaptive median filter. GIScience & Remote Sens 41(3):244–266

    Article  Google Scholar 

  61. Rajan J, Kaimal MR (2006) Speckle reduction in images with wead and wecd. In: Proceedings of the 5th Indian conference on computer vision, graphics and image processing, ICVGIP’06. Springer, Berlin, pp 184–193

  62. Ranjani JJ, Thiruvengadam SJ (2010) Dual-tree complex wavelet transform based sar despeckling using interscale dependence. IEEE Trans Geosci Remote Sens 48(6):2723–2731

    Article  Google Scholar 

  63. Ranjani JJ, Thiruvengadam SJ (2011) Generalized sar despeckling based on dtcwt exploiting interscale and intrascale dependences. IEEE Geosci Remote Sens Lett 8(3):552–556

    Article  Google Scholar 

  64. SAR Sensors. https://webapps.itc.utwente.nl/sensor/

  65. Sarode MV, Deshmukh PR (2011) Reduction of speckle noise and image enhancement of images using filtering technique

  66. Sar image processing, sandia national laboratories (synthetic aperture radar imagery database)

  67. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556

  68. Shivakumara Swamy PM, Vani K (2016). A novel thresholding technique in the curvelet domain for improved speckle removal in sar images. Optik 127(2):634–637

  69. Singh P, Shree R (2018) A new sar image despeckling using directional smoothing filter and method noise thresholding. Eng Sci Technol, an International Journal 21(4):589–610

    Article  Google Scholar 

  70. Sivaranjani R, Mohamed Mansoor Roomi S, Senthilarasi M (2019) Speckle noise removal in sar images using multi-objective pso (mopso) algorithm. Appl Soft Comput 76:671–681

    Article  Google Scholar 

  71. Solbo S, Eltoft T (2004) Homomorphic wavelet-based statistical despeckling of sar images. IEEE Trans Geosci Remote Sens 42(4):711–721

    Article  Google Scholar 

  72. Solbø S, Eltoft T (2004) -wmap: a statistical speckle filter operating in the wavelet domain. Int J Remote Sens 25(5):1019–1036

    Article  Google Scholar 

  73. (2015) Speckle suppression in sar images employing modified anisotropic diffusion filtering in wavelet domain for environment monitoring. Measurement 74:246–254

  74. Steidl G, Teuber T (2010) Removing multiplicative noise by douglas-rachford splitting methods. J Math Imaging Vis 36:168–184

    Article  MathSciNet  Google Scholar 

  75. Subrahmanyam GRKS, Rajagopalan AN, Aravind R (2008) A recursive filter for despeckling sar images. IEEE Trans Image Process 17(10):1969–1974

    Article  MathSciNet  Google Scholar 

  76. Sveinsson JR, Atli Benediktsson J (2003) Almost translation invariant wavelet transformations for speckle reduction of sar images. IEEE Trans Geosci Remote Sens 41(10):2404–2408

    Article  Google Scholar 

  77. Tabassum N, Vaccari A, Acton S (2018) Speckle removal and change preservation by distance-driven anisotropic diffusion of synthetic aperture radar temporal stacks. Digit Signal Process 74:43–55

    Article  MathSciNet  Google Scholar 

  78. Tang Y, Liu X (2017) Nrdsp: a novel assessment of sar image despeckling. Neurocomputing 249:225–236

    Article  Google Scholar 

  79. Tang X, Zhang L, Ding X (2018) Sar image despeckling with a multilayer perceptron neural network. Int J Digit Earth 12:1–21

    Google Scholar 

  80. Ullah A, Chen W, Sun HG, Khan M A (2016) A modified multi-grid algorithm for a novel variational model to remove multiplicative noise. J Vis Commun Image Represent 40:485–501

    Article  Google Scholar 

  81. Vitale S, Ferraioli G, Pascazio V (2019) A new ratio image based cnn algorithm for sar despeckling

  82. Vitale S, Ferraioli G, Pascazio V (2020) Multi-objective cnn based algorithm for sar despeckling

  83. Wang P, Zhang H, Patel VM (2017) Generative adversarial network-based restoration of speckled sar images. In: 2017 IEEE 7th international workshop on computational advances in multi-sensor adaptive processing (CAMSAP), pp 1–5

  84. Wang J, Lei P, Zheng T (2018) Sar image despeckling based on variance constrained convolutional neural network, p 81

  85. Woo H, Ha J (2016) Besta-divergence-based variational model for speckle reduction. IEEE Signal Process Lett 23(11):1557–1561

    Article  Google Scholar 

  86. Xia H, Montresor S, Picart P, Guo R, Li J (2018) Comparative analysis for combination of unwrapping and de-noising of phase data with high speckle decorrelation noise. Opt Lasers Eng 107:71–77

    Article  Google Scholar 

  87. Xie H, Pierce LE, Ulaby FT (2002) Despeckling sar images using a low-complexity wavelet denoising process. In: IEEE international geoscience and remote sensing symposium, vol 1, pp 321–324

  88. Xie H, Pierce LE, Ulaby FT (2002) Sar speckle reduction using wavelet denoising and markov random field modeling. IEEE Trans Geosci Remote Sens 40(10):2196–2212

    Article  Google Scholar 

  89. Xu L, Li J, Shu Y, Peng J (2014) Sar image denoising via clustering-based principal component analysis. IEEE Trans Geosci Remote Sens 52(11):6858–6869

    Article  Google Scholar 

  90. Xu Z, Shi Q, Chen Y, Feng W, Shao Y, Sun L, Huang X (2018) Non-stationary speckle reduction in high resolution sar images. Digit Signal Process 73:72–82

    Article  MathSciNet  Google Scholar 

  91. Yang X, Denis L, Tupin F, Yang W (2019) Sar image despeckling using pre-trained convolutional neural network models. In: 2019 Joint urban remote sensing event (JURSE), pp 1–4

  92. Yang X, Denis L, Tupin F, Yang W (2019) Sar image despeckling using pre-trained convolutional neural network models, pp 1–4

  93. Ye Y, Sun J, Guan J (2019) Blind sar image despeckling using self-supervised dense dilated convolutional neural network

  94. Yuan Y, Sun J, Guan J, Feng P, Wu Y (2019) A practical solution for sar despeckling with only single speckled images

  95. Yun S, Woo H (2012) A new multiplicative denoising variational model based on m th root transformation. IEEE Trans Image Process 21(5):2523–2533

    Article  MathSciNet  Google Scholar 

  96. Zeng T, Ren Z, Lam E (2018) Speckle suppression using the convolutional neural network with an exponential linear unit, p CW5B.3

  97. Zhang K, Zuo W, Zhang L (2018) Ffdnet: toward a fast and flexible solution for cnn-based image denoising. IEEE Trans Image Process 27(9):4608–4622

    Article  MathSciNet  Google Scholar 

  98. Zhang Q, Yuan Q, Li J, Yang Z, Ma X, Shen H, Zhang L (2018) Learning a dilated residual network for sar image despeckling. Remote Sens 10:1–18

    Article  Google Scholar 

  99. Zhang J, Li W, Li Y (2020) Sar image despeckling using multiconnection network incorporating wavelet features. IEEE Geosci Remote Sens Lett 17(8):1363–1367

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ponmani E..

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article has been retracted. Please see the retraction notice for more detail: https://doi.org/10.1007/s11042-024-19946-7

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponmani E., Saravanan P. RETRACTED ARTICLE: Image denoising and despeckling methods for SAR images to improve image enhancement performance: a survey. Multimed Tools Appl 80, 26547–26569 (2021). https://doi.org/10.1007/s11042-021-10871-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-10871-7

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy