Skip to main content
Log in

Underwater image restoration using oblique gradient operator and light attenuation prior

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Underwater captured images are often degraded with low contrast, color distortion, and poor visibility caused by absorption and scattering when light travels through water. To address these issues, we propose a novel underwater image restoration method which aims at recovering the scene radiance with an accurate scene depth. Depending on the accuracy estimation of scene depth obtained by combing the oblique gradient operator and underwater light attenuation prior, the transmission map can be further precisely determined. Moreover, we utilize the quad-tree subdivision to estimate the background light by both considering smoothness and color difference. After acquiring the background light and transmission map, the scene radiance can be finally restored based on the underwater image formation model. Experiential results demonstrate that the proposed method has a good performance on dehazing, color correction and contrast enhancement. Qualitative and quantitative comparisons with several state-of-the-art methods further validate the superiority of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Algorithm 2
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ancuti CO, Ancuti C, De Vleeschouwer C, Bekaert P (2018) Color balance and fusion for underwater image enhancement. IEEE Trans Image Process 27(1):379–393

    Article  MATH  Google Scholar 

  2. Berman D, Levy D, Avidan S, Treibitz T (2020) Underwater single image color restoration using haze-lines and a new quantitative dataset. IEEE Trans Patt Anal Mach Intell 8828:1–1 (early access).

  3. Borkar S, Bonde SV (2016) Underwater image restoration using single color channel prior. In: 2016 international conference on signal and information processing (IConSIP). IEEE, pp 1–4.

  4. Cao K, Peng YT, Cosman PC (2018) Underwater image restoration using deep networks to estimate background light and scene depth. In: 2018 IEEE southwest symposium on image analysis and interpretation (SSIAI). IEEE, pp 1–4.

  5. Carlevaris-Bianco N, Mohan A, Eustice RM (2010) Initial results in underwater single image dehazing. In: OCEANS 2010 MTS/IEEE SEATTLE. IEEE, pp 1–8

  6. Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277

    Article  MATH  Google Scholar 

  7. Chao L, Wang M (2010) Removal of water scattering. In: 2010 international conference on computer engineering and technology, proceedings. IEEE, pp V2-35-V2-39.

  8. Chiang JY, Chen YC (2012) Underwater image enhancement by wavelength compensation and dehazing. IEEE Trans Image Process 21(4):1756–1769

    Article  MATH  Google Scholar 

  9. Choi LK, You J, Bovik AC (2015) Referenceless prediction of perceptual fog density and perceptual image defogging. IEEE Trans Image Process 24(11):3888–3901

    Article  MATH  Google Scholar 

  10. Ding X, Wang Y, Yan Y et al (2019) Jointly adversarial network to wavelength compensation and dehazing of underwater images. arXiv:1907.05595.

  11. Drews Jr P, do Nascimento E, Moraes F, et al (2013) Transmission estimation in underwater single images. In: 2013 IEEE International Conference on Computer Vision Workshops. IEEE, pp 825–830

  12. Fang Y, Ma K, Wang Z, … Zhai G (2014) No-reference quality assessment of contrast-distorted images based on natural scene statistics. IEEE Signal Processing Lett 22(7):838–842

    Google Scholar 

  13. Galdran A, Pardo D, Picón A, Alvarez-Gila A (2015) Automatic red-channel underwater image restoration. J Vis Commun Image Represent 26:132–145

    Article  Google Scholar 

  14. Gao Y, Li H, Wen S (2016) Restoration and enhancement of underwater images based on bright channel prior. Math Probl Eng 2016:1–15

    Google Scholar 

  15. Garg D, Garg NK, Kumar M (2018) Underwater image enhancement using blending of CLAHE and percentile methodologies. Multimed Tools Appl 77:26545–26561

    Article  Google Scholar 

  16. Gu K, Zhai G, Lin W, … Zhang W (2015) No-reference image sharpness assessment in autoregressive parameter space. IEEE Trans Image Process 24(10):3218–3231

    Article  MATH  Google Scholar 

  17. Gu K, Zhai G, Lin W, … Liu M (2016) The analysis of image contrast: from quality assessment to automatic enhancement. IEEE Trans Cybernetics 46(1):284–297

    Article  Google Scholar 

  18. Gu K, Li L, Lu H, … Lin W (2017) A fast reliable image quality predictor by fusing micro- and macro-structures. IEEE Trans Ind Electron 64(5):3903–3912

    Article  Google Scholar 

  19. Gu K, Lin W, Zhai G, … Chen CW (2017) No-reference quality metric of contrast-distorted images based on information maximization. IEEE Trans Cybernetics 47(12):4559–4565

    Article  Google Scholar 

  20. Gu K, Tao D, Qiao J et al (2018) Learning a no-reference quality assessment model of enhanced images with big data. IEEE Trans Neural Networks Learn Syst 29(4):1301–1313

    Article  Google Scholar 

  21. He K, Sun J, Tang X (2009) Single image haze removal using dark channel prior. In: 2009 IEEE conference on computer vision and pattern recognition. IEEE, pp 1956–1963

  22. He K, Sun J, Tang X (2013) Guided image filtering. IEEE Trans Pattern Anal Mach Intell 35(6):1397–1409

    Article  Google Scholar 

  23. Hou G, Pan Z, Wang G, … Duan J (2019) An efficient nonlocal variational method with application to underwater image restoration. Neurocomputing 369:106–121

    Article  Google Scholar 

  24. Hou G, Li J, Wang G, … Zhao X (2020) Underwater image dehazing and denoising via curvature variation regularization. Multimed Tools Appl 79:20199–20219

    Article  Google Scholar 

  25. Hou G, Zhao X, Pan Z, … Li J (2020) Benchmarking underwater image enhancement and restoration, and beyond. IEEE Access 8:122078–122091

    Article  Google Scholar 

  26. Huang B, Pan Z, Yang H, … Bai L (2020) Variational level set method for image segmentation with simplex constraint of landmarks. Signal Process Image Commun 82:115745

    Article  Google Scholar 

  27. Huang B, Ge L, Chen G, … Pan Z (2021) Nonlocal graph theory based transductive learning for hyperspectral image classification. Pattern Recogn 116:107967

    Article  Google Scholar 

  28. Huang B, Ge L, Chen X, … Chen G (2022) Vertical structure-based classification of oceanic eddy using 3-D convolutional neural network. IEEE Trans Geosci Remote Sens 60:1–14

    Google Scholar 

  29. Huang B, Wang Z, Shang J et al (2022) A spectral sequence-based nonlocal long short-term memory network for hyperspectral imagery classification. IEEEJ selected topics Appl earth Observ remote sensing 1–1.

  30. Jaffe JS (1990) Computer modeling and the design of optimal underwater imaging systems. IEEE J Ocean Eng 15:101–111

    Article  Google Scholar 

  31. Kim JH, Jang WD, Sim JY, Kim CS (2013) Optimized contrast enhancement for real-time image and video dehazing. J Vis Commun Image Represent 24:410–425

    Article  Google Scholar 

  32. Li C, Guo J, Cong R et al (2016) Underwater image enhancement by dehazing with minimum information loss and histogram distribution prior. IEEE Trans Image Process 25(12):5664–5677

    Article  MATH  Google Scholar 

  33. Li C, Guo C, Ren W, … Tao D (2020) An underwater image enhancement benchmark dataset and beyond. IEEE Trans Image Process 29:4376–4389

    Article  MATH  Google Scholar 

  34. Li K, Qi S, Yang H, … Song D (2020) Extensible image object co-segmentation with sparse cooperative relations. Inf Sci 521:422–434

    Article  Google Scholar 

  35. Li X, Hou G, Tan L, … Liu W (2020) A hybrid framework for underwater image enhancement. IEEE Access 8:197448–197462

    Article  Google Scholar 

  36. Li Y, Huang B, Yang H, … Duan J (2020) Efficient image structural similarity quality assessment method using image regularised feature. IET Image Process 14(16):4401–4411

    Article  Google Scholar 

  37. Li X, Hou G, Li K, … Pan Z (2022) Enhancing underwater image via adaptive color and contrast enhancement, and denoising. Eng Appl Artif Intell 111:104759

    Article  Google Scholar 

  38. Liu H, Chau LP (2019) Deepsea video descattering. Multimed Tools Appl 78:28919–289294

    Article  Google Scholar 

  39. Liu R, Fan X, Zhu M, … Luo Z (2020) Real-world underwater enhancement: challenges, benchmarks, and solutions under natural light. IEEE Trans Circ Syst Video Technol 30(12):4861–4875

    Article  Google Scholar 

  40. Liu Y, Rong S, Cao X, … He B (2020) Underwater single image dehazing using the color space dimensionality reduction prior. IEEE Access 8:91116–91128

    Article  Google Scholar 

  41. Lu H, Uemura T, Wang D, … Kim H (2020) Deep-sea organisms tracking using dehazing and deep learning. Mobile Networks Appl 25:1008–1015

    Article  Google Scholar 

  42. Panetta K, Gao C, Agaian S (2016) Human-visual-system-inspired underwater image quality measures. IEEE J Ocean Eng 41(3):541–551

    Article  Google Scholar 

  43. Park E, Sim JY (2020) Underwater image restoration using geodesic color distance and complete image dormation model. IEEE Access 8:157918–157930

    Article  Google Scholar 

  44. Peng YT, Cosman PC (2017) Underwater image restoration based on image blurriness and light absorption. IEEE Trans Image Process 26(4):1579–1594

    Article  MATH  Google Scholar 

  45. Peng YT, Zhao X, Cosman PC (2015) Single underwater image enhancement using depth estimation based on blurriness. In: 2015 IEEE international conference on image processing (ICIP). IEEE, pp 4952–4956.

  46. Peng YT, Cao K, Cosman PC (2018) Generalization of the dark channel prior for single image restoration. IEEE Trans Image Process 27(6):2856–2868

    Article  MATH  Google Scholar 

  47. Qi Q, Zhang Y, Tian F, … Song D (2022) Underwater image co-enhancement with correlation feature matching and joint learning. IEEE Trans Circ Syst Video Technol 32(3):1133–1147

    Article  Google Scholar 

  48. Qi Q, Li K, Zheng H et al (2022) SGUIE-net: semantic attention guided underwater image enhancement with multi-scale perception. arXiv:2201.02832.

  49. Ren W, Ma L, Zhang J et al (2018) Gated fusion network for single image dehazing. In: 2018 IEEE/CVF conference on computer vision and pattern recognition, pp 3253–3261.

  50. Ren W, Pan J, Zhang H, … Yang MH (2020) Single image dehazing via multi-scale convolutional neural networks with holistic edges. Int J Comput Vis 128:240–259

    Article  Google Scholar 

  51. Sanila KH, Balakrishnan AA, Supriya MH (2019) Underwater image enhancement using white balance, USM and CLHE. In: 2019 international symposium on ocean technology. IEEE, pp 106–116.

  52. Schechner Y, Karpel N (2004) Clear underwater vision. Proceed 2004 IEEE Comput Soc Conf Comput vision Patt Recog.

  53. Si J, Huang B, Yang H, … Pan Z (2022) A no-reference stereoscopic image quality assessment network based on binocular interaction and fusion mechanisms. IEEE Trans Image Process 31:3066–3080

    Article  Google Scholar 

  54. Singh D, Kumar V (2019) Image dehazing using Moore neighborhood-based gradient profile prior. Signal Process Image Commun 70:131–144

    Article  Google Scholar 

  55. Song W, Wang Y, Huang D, Tjondronegoro D (2018) A rapid scene depth estimation model based on underwater light attenuation prior for underwater image restoration. Adv Multimedia Inform Process – PCM 2018:678–688

    Google Scholar 

  56. Wang Y, Liu H, Chau LP (2018) Single underwater image restoration using adaptive attenuation-curve prior. IEEE Trans Circ Syst I: Regular Papers 65(3):992–1002

    Google Scholar 

  57. Wong SL, Paramesran R, Taguchi A (2018) Underwater image enhancement by adaptive gray world and differential gray-levels histogram equalization. Adv Electrical Comp Eng 18(2):109–116

    Article  Google Scholar 

  58. Xie J, Hou G, Wang G et al (2021) A variational framework for underwater image dehazing and deblurring. IEEE Trans Circ Syst Video Technol 99:1–1

    Google Scholar 

  59. Xue B, Huang B, Wei W, … Zhang H (2021) An efficient deep-sea debris detection method using deep neural networks. IEEE J Selected Topics Appl Earth Observ Remote Sensing 14:12348–12360

    Article  Google Scholar 

  60. Yang M, Sowmya A (2015) An underwater color image quality evaluation metric. IEEE Trans Image Process 24(12):6062–6071

    Article  MATH  Google Scholar 

  61. Yang H, Tian F, Qi Q, … Li K (2022) Underwater image enhancement with latent consistency learning-based color transfer. IET Image Process 16(6):1594–1612

    Article  Google Scholar 

  62. Zhang S, Li N, Qiu C, … Zheng B (2020) Depth map prediction from a single image with generative adversarial nets. Multimed Tools Appl 79:14357–14374

    Article  Google Scholar 

  63. Zhou Y, Wu Q, Yan K, … Xiang W (2019) Underwater image restoration using color-line model. IEEE Trans Circ Syst Video Technol 29(3):907–911

    Article  Google Scholar 

Download references

Acknowledgments

The research work is partially supported by National Natural Science Foundation of China (No. 61901240), the Natural Science Foundation of Shandong Province, China (No. ZR2019BF042, ZR2019MF050), the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao) (No.2022QNLM050301), and China Scholarship Council (No. 201908370002), and the China Postdoctoral Science Foundation (No. 2017 M612204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guojia Hou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Hou, G. & Wang, G. Underwater image restoration using oblique gradient operator and light attenuation prior. Multimed Tools Appl 82, 6625–6645 (2023). https://doi.org/10.1007/s11042-022-13605-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-022-13605-5

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy