Abstract
Nanoaluminum combined with an oxidizing polymer binder is representative of a new class of nanotechnology energetic materials termed “structural energetic materials” that can be laser initiated by near-infrared heating of the Al particles. The visible and near-IR absorption spectra of Al nanoparticles passivated by the native oxide Al2O3, embedded in nitrocellulose (NC) binder, are simulated numerically using a model for the metallic dielectric function that incorporates the effects of interband transitions. The effects of oxide thickness, nanoparticle size and size distribution, and particle shape on the absorption characteristics are investigated. The nanoparticle spectra evidence an absorption peak and valley in the 550–1,100 nm range that redshift with decreasing nanoparticle size. Calculations indicate that this peak-valley structure results from interband transitions, and the unusual redshift cannot be explained without using an interband transition onset frequency that varies with nanoparticle size.









Similar content being viewed by others
References
Abe M, Suwa T (2004) Surface plasma resonance and magneto-optical enhancement in composites containing multicore-shell structured nanoparticles. Phys Rev B 70:235103–235118
Anno E, Tanimoto M (2006) Size-dependent change in energy bands of nanoparticles of white tin. Phys Rev B 73:155430–155436
Ashcroft NW, Sturm K (1971) Interband absorption and the optical properties of polyvalent metals. Phys Rev B 3:1898–1910
Averitt RD, Sarkar D, Halas NJ (1997) Plasmon resonance shifts of Au-coated Au2S nanoshells: insight into multicomponent nanoparticle growth. Phys Rev Lett 78:4217–4220
Balamurugan B, Maruyama T (2005) Evidence of an enhanced interband absorption in Au nanoparticles: size-dependent electronic structure and optical properties. Appl Phys Lett 87:143105–143108
Balamurugan B, Maruyama T (2007) Size-modified d bands and associated interband absorption of Ag nanoparticles. J Appl Phys 102:034306–034311
Bohren F, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New York
Bourne NK (2001) On the laser ignition and initiation of explosives. Proc R Soc Lond A 457:1401–1426
Charnay C, Lee A, Man SQ, Moran CE, Radloff C, Bradley RK, Halas NJ (2003) Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties. J Phys Chem B 107:7327–7333
Ehrenreich H, Philipp H (1962) Optical properties of Ag and Cu. Phys Rev 128:1622–1629
Ehrenreich H, Philipp HR, Segall B (1963) Optical properties of aluminum. Phys Rev 132:1918–1928
Fedrigo S, Harbich W, Buttet J (1993) Collective dipole oscillations in small silver clusters embedded in rare-gas matrices. Phys Rev B 47:10706–10715
Graf C, Blaaderen AV (2002) Metallodielectric colloidal core–shell particles for photonic applications. Langmuir 18:524–534
Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248
Kachkachi H, Ezzir A, Nogues M, Tronc E (2000) Surface effects in nanoparticles: application to maghemite γ-Fe2O3. Eur Phys J B 14:681–689
Li WH, Yang CC, Tsao FC, Wu SY, Huang PJ, Chung MK, Yao YD (2005) Enhancement of superconductivity by the small size effect in nanoparticles. Phys Rev B 72:214516–214521
Moore K, Pantoya ML, Son SF (2007) Introduction: nanoscale composite energetic materials. J Propuls Power 23:643–644
Muskens OL, Fatti ND, Vallee F (2006) Single metal nanoparticle absorption spectroscopy and optical characterization. Appl Phys Lett 88:063109–063112
Oldenburg SJ, Hale GD, Jackson JB, Halas NJ (1999) Infrared extinction properties of gold nanoshells. Appl Phys Lett 75:2897–2899
Palik ED (1985) Handbook of optical constants of solids. Academic Press, New York
Parker LJ, Ladouceur HD, Russell TP (2000) Teflon and Teflon/Al (nanocrystalline) decomposition chemistry at high pressures. AIP Conf Proc 505:941–944
Pinchuk A, Plessen GV, Kreibig U (2004) Influence of interband electronic transitions on the optical absorption in metallic nanoparticles. J Phys D Appl Phys 37:3133–3139
Plantier KB, Pantoya ML, Gash AE (2005) Combustion wave speeds of nanocomposite Al/Fe2O3: the effects of Fe2O3 particle synthesis technique. Combust Flame 140:299–309
Ritchie SJ, Thynell ST, Kuo KK (1997) Modeling and experiments of laser-induced ignition of nitramine propellants. J Propuls Power 13:367–374
Rossi C, Zhang KL, Esteve D, Alphonse P, Tailhades P, Vahlas C (2007) Nanoenergetic materials for MEMS: a review. J Microelectromech Syst 16:919–931
See KC, Spicer JB, Brupbacher J, Zhang DJ, Vargo TG (2005) Modeling interband transitions in silver nanoparticle-fluoropolymer composites. J Phys Chem B 109:2693–2698
Sun CQ, Chen TP, Tay BK, Li S, Huang H, Zhang YB, Pan LK, Lau SP, Sun XW (2001) An extended ‘quantum confinement’ theory: surface-coordination imperfection modifies the entire band structure of a nanosolid. J Phys D Appl Phys 34:3470–3479
Sun CQ, Pan LK, Fu YQ, Tay BK, Li S (2003) Size dependence of the 2p-level shift of nanosolid silicon. J Phys Chem B 107:5113–5115
Sun CQ, Pan LK, Chen TP, Sun XW, Li S, Li CM (2006) Distinguishing the effect of crystal-field screening from the effect of valence recharging on the 2p3/2 and 3d5/2 level energies of nanostructured copper. Appl Surf Sci 252:2101–2107
Takeda Y, Lee CG, Kishimoto N (2002) Optical properties of nanoparticle composites in insulators by high-flux 60 keV Cu implantation. Nucl Instrum Methods Phys Res B 190:797–801
Taneja P, Ayyub P (2002) Size dependence of the optical spectrum in nanocrystalline silver. Phys Rev B 65:245412–245418
Taton TA, Mirkin CA, Letsinger RL (2000) Scanometric DNA array detection with nanoparticle probes. Science 289:1757–1760
Wang H, Tam F, Grady NK, Halas NJ (2005) Cu nanoshells: effects of interband transitions on the nanoparticle plasmon resonance. J Phys Chem B 109:18218–18222
Weiser V, Kelzenberg S, Eisenreich N (2001) Influence of the metal particle size on the ignition of energetic materials. Propellants Explos Pyrotech 26:284–289
Westcott SL, Jackson JB, Radloff C, Halas NJ (2002) Relative contributions to the plasmon line shape of metal nanoshells. Phys Rev B 66:155431–155436
Yang YY, Wang SF, Sun ZY, Dlott DD (2004) Near-infrared laser ablation of poly tetrafluoroethylene (Teflon) sensitized by nanoenergetic materials. Appl Phys Lett 85:1493–1495
Yang YQ, Wang SF, Sun ZY, Dlott DD (2005) Near-infrared and visible absorption spectroscopy of nano-energetic materials containing aluminum and boron. Propellants Explos Pyrotech 30:171–177
Acknowledgments
This material is based upon work at the Harbin Institute of Technology supported by National Natural Science Foundation of China (Grant No. 20573028). Work at the University of Illinois supported by the US Air Force Office of Scientific Research under award FA9550-06-1-0235 and the US Army Research Office under award W911NF-04-1-0178.
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Peng, Y., Wang, Y., Yang, Y. et al. Simulation of the absorption spectra of nanometallic Al particles with core–shell structure: size-dependent interband transitions. J Nanopart Res 12, 777–787 (2010). https://doi.org/10.1007/s11051-009-9785-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11051-009-9785-9