Abstract
In this paper a numerical technique is proposed for solving the time fractional diffusion-wave equation. We obtain a time discrete scheme based on finite difference formula. Then, we prove that the time discrete scheme is unconditionally stable and convergent using the energy method and the convergence order of the time discrete scheme is \(\mathcal {O}(\tau ^{3-\alpha })\). Firstly, we change the main problem based on Dirichlet boundary condition to a new problem based on Robin boundary condition and then, we consider a semi-discrete scheme with Robin boundary condition and show when \(\beta \rightarrow +\infty \) solution of the main semi-discrete problem with Dirichlet boundary condition is convergent to the solution of the new semi-discrete problem with Robin boundary condition. We consider the new semi-discrete problem with Robin boundary condition and use the meshless Galerkin method to approximate the spatial derivatives. Finally, we obtain an error bound for the new problem. We prove that convergence order of the numerical scheme based on Galekin meshless is \(\mathcal {O}(h)\). In the considered method the appeared integrals are approximated using Gauss Legendre quadrature formula. The main aim of the current paper is to obtain an error estimate for the meshless Galerkin method based on the radial basis functions. Numerical examples confirm the efficiency and accuracy of the proposed scheme.
Similar content being viewed by others
References
Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional calculus models and numerical methods. Series on complexity, nonlinearity and chaos. World Scientific, Boston (2012)
Bhrawy, A.H., Doha, E.H., Baleanu, D., Ezz-Eldien, S.S.: A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations. J. Comput. Phys. 293, 142–156 (2015)
Brezis, H.: Functional analysis Sobolev spaces and partial differential equations springer new york dordrecht heidelberg london (2011)
Bagley, R., Torvik, P.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27, 201–210 (1983)
Cai, Z.: Convergence and error estimates for meshless Galerkin methods. Appl. Math. Comput. 184, 908–916 (2007)
Cui, M.: Compact finite difference method for the fractional diffusion equation. J. Comput. Phys. 228, 7792–7804 (2009)
Chen, C.M., Liu, F., Burrage, K.: Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation. Appl. Math. Comput. 198, 754–769 (2008)
Dacorogna, B.: Introduction to the calculus of variations. Imperial College Press, London (2004)
Dehghan, M.: Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices. Math. Comput. Simul. 71, 16–30 (2006)
Dehghan, M., Mirzaei, D.: The meshless local Petrov-Galerkin (MLPG) method for the generalized two-dimensional non-linear Schrodinger equation. Eng. Anal. Bound. Elem. 32, 747–756 (2008)
Dehghan, M., Salehi, R.: The numerical solution of the non-linear integro-differential equations based on the meshless method. J. Comput. Appl. Math. 236, 2367–2377 (2012)
Dehghan, M., Manafian, J., Saadatmandi, A.: The solution of the linear fractional partial differential equations using the homotopy analysis method. Zeitschrift fur Naturforschung - Section A 65, 935–949 (2010)
Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265, 229–248 (2002)
Du, R., Cao, W.R., Sun, Z.Z.: A compact difference scheme for the fractional diffusion-wave equation. Appl. Math. Model. 34, 2998–3007 (2010)
Duan, Y., Tan, Y.J.: Meshless Galerkin method based on regions partitioned into subdomains. Appl. Math. Comput. 162, 317–327 (2005)
Saadatmandi, A., Dehghan, M.: A new operational matrix for solving fractional-order differential equations. Comput. Math. Applic. 59(3), 1326–1336 (2010)
Esmaeili, S., Shamsi, M., Luchko, Y.: Numerical solution of fractional differential equations with a collocation method based on Mntz polynomials. Comput. Math. Appl. 62, 918–929 (2011)
Fasshauer, G. E.: Meshfree approximation methods with MATLAB, USA World Scientific (2007)
Gu, Y.T., Zhuang, P., Liu, Q.: An advanced meshless method for time fractional diffusion equation. Int. J. Comput. Methods (CMES) 8, 653–665 (2011)
Gu, Y.T., Zhuang, P., Liu, F.: An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation. Comput. Model. Eng. Sci. CMES 56, 303–334 (2010)
Franke, C., Schaback, R.: Convergence order estimates of meshless collocation methods using radial basis functions. Adv. Comput. Math. 8, 381–399 (1998)
Jiang, H., Liu, F., Turner, I., Burrag, K.: Analytical solutions for the multi-term time-fractional diffusion-wave/diffusion equations in a finite domain. Comput. Math. Appl. 64, 3377–3388 (2012)
Kansa, E.J.: Multiquadrics A scattered data approximation scheme with applications to computational fluid-dynamics I. Comput. Math. Appl. 19, 127–145 (1990)
Kansa, E.J.: Multiquadrics A scattered data approximation scheme with applications to computational fluid dynamics - II. Comput. Math. Appl. 19, 147–161 (1990)
Kansa, E.J., Aldredge, R.C., Ling, L.: Numerical simulation of two–dimensional combustion using mesh-free methods. Eng. Anal. Bound. Elem. 33, 940–950 (2009)
Li, J., Chen, Y.: Computational partial differential equations using MATLAB. CRC Press, Boca Raton (2008)
Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comput. Phys. 205, 719–736 (2005)
Liu, Q., Gu, Y., Zhuang, P., Liu, F., Nie, Y.: An implicit, RBF meshless approach for time fractional diffusion equations. Comput. Mech. 48, 1–12 (2011)
Liu, Q., Liu, F., Turner, I., Anh, V., Gu, Y.T.: A RBF meshless approach for modeling a fractal mobile/immobile transport model. Appl. Math. Comput. 226, 336–347 (2014)
Li, X.L., Zhu, J.L.: Galerkin boundary node method and its convergence analysis. J. Comput. Appl. Math. 230, 314–328 (2009)
Li, X.L.: Meshless Galerkin algorithms for boundary integral equations with moving least square approximations. Appl. Numer. Math. 61, 1237–1256 (2011)
Metzler, R., Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A 37, R161–208 (2004)
Miller, K.S., Ross, B.: An introductional the fractional calculus and fractional differential equations. Academic Press, New York and London (1974)
Mirzaei, D., Dehghan, M.: A meshless based method for solution of integral equations. Appl. Numer. Math. 60, 245–262 (2010)
Mohebbi, A., Dehghan, M.: The use of compact boundary value method for the solution of two-dimensional Schrödinger equation. J. Comput. Appl. Math. 225, 124–134 (2009)
Mohebbi, A., Abbaszadeh, M., Dehghan, M.: A high-order and unconditionally stable scheme for the modified anomalous fractional sub-diffusion equation with a nonlinear source term. J Comput. Phy. 240, 36–48 (2013)
Murillo, J.Q., Yuste, S.B.: An explicit difference method for solving fractional diffusion and diffusion-wave equations in the Caputo form. J. Comput. Nonl. Dynam. 6, 021–014 (2011)
Momani, S., Odibat, Z.M.: Fractional green function for linear time-fractional inhomogeneous partial differential equations in fluid mechanics. J. Appl. Math. Comput. 24, 167–178 (2007)
Odibat, Z.M.: Computational algorithms for computing the fractional derivatives of functions. Math. Comput. Simul. 79, 2013–2020 (2009)
Oldham, K.B., Spanier, J.: The fractional calculus: Theory and application of differentiation and integration to arbitrary order academic press (1974)
Oldham, K.B., Spanier, J.: The fractional calculus. Academic Press, New York and London (1974)
Podulbny, I.: Fractional differential equations. Academic Press, New York (1999)
Quarteroni, A., Valli, A.: Numerical approximation of partial differential equations. Springer-Verlag, New York (1997)
Shokri, A., Dehghan, M.: Meshless method using radial basis functions for the numerical solution of two–dimensional complex Ginzburg-Landau equation. Comput. Model. Eng. Sci. CMES 34, 333–358 (2012)
Shokri, A., Dehghan, M.: A Not-a-Knot meshless method using radial basis functions and predictor-corrector scheme to the numerical solution of improved Boussinesq equation. Comput. Phys. Commun. 181, 1990–2000 (2010)
Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)
Tadjeran, C., Meerschaert, M.M., Scheffler, H.P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006)
Wendland, H.: Scattered Data Approximation. In: Cambridge Monograph on Applied and Computational Mathematics, Cambridge University Press (2005)
Wendland, H.: Meshless Galerkin methods using radial basis functions. Math. Comput. 68, 1521–1531 (1999)
Wendland, H.: Error estimates for interpolation by compactly supported radial basis functions of minimal degree. J. Approx. Theory 93, 258–272 (1998)
Wess, W.: The fractional diffusion equation. J. Math. Phys. 27, 2782–2785 (1996)
Wu, Z., Shaback, R.: Local error estimates for radial basis function interpolation of scattered data. IMA J. Numer. Anal. 13, 13–27 (1993)
Yang, J.Y., Zhao, Y.M., Liu, N., Bu, W.P., Xu, T.L., Tang, Y.F., An implicit, M L S: Meshless method for 2D time dependent fractional diffusion-wave equation. Appl. Math. Model. 39, 1229–1240 (2015)
Yuste, S.B.: Weighted average finite difference methods for fractional diffusion equations. J. Comput. Phys. 216, 264–274 (2006)
Yuste, S.B., Acedo, L.: An, explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Numer. Anal. 42(5), 1862–1874 (2005)
Zhao, X., Sun, Z.Z.: Compact Crank-Nicolson schemes for a class of fractional Cattaneo equation in inhomogeneous medium. J. Sci. Comput. 62, 1–25 (2014)
Zhao, X., Sun, Z.Z., Karniadakis, G.E.: Second-order approximations for variable order fractional derivatives: Algorithms and applications. J. Comput. Phys. 293, 184–200 (2015)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dehghan, M., Abbaszadeh, M. & Mohebbi, A. Analysis of a meshless method for the time fractional diffusion-wave equation. Numer Algor 73, 445–476 (2016). https://doi.org/10.1007/s11075-016-0103-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11075-016-0103-1
Keywords
- Time fractional diffusion-wave equation
- Fractional derivative
- Convergence analysis
- Error estimate
- Caputo derivative
- Meshless Galerkin method
- Radial basis functions