Skip to main content

Advertisement

Log in

Multi-stratum resources resilience in software defined data center interconnection based on IP over elastic optical networks

  • Published:
Photonic Network Communications Aims and scope Submit manuscript

Abstract

IP over elastic optical network is a very promising networking architecture to interconnect data centers. It can enable efficient resource utilization and support heterogeneous bandwidth demands in cost-effective, highly available, and energy-effective manner. In case of aggregation elastic optical network node failure, to ensure a high-level quality of service for user request after the failure becomes a research focus. In this paper, we present a novel multi-stratum resources resilience (MSRR) architecture for the data center services in software defined data center interconnection based on IP over elastic optical networks. The MSRR can enable joint optimization of IP network, elastic optical network, and application stratum resources, and enhance the service resilience and the data center responsiveness to the dynamic end-to-end service demands. Additionally, a service-aware resource collaborative resilience strategy for MSRR is introduced based on the proposed architecture, which can provide the restoration using the multiple stratums resources in case of failure. The overall feasibility and efficiency of the proposed architecture are experimentally verified on our testbed. Moreover, the network performances are quantitatively evaluated through the simulation under heavy traffic load scenario in terms of path blocking probability, resource occupation rate, and path resilience latency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kachris, C., Tomkos, I.: A survey on optical interconnects for data centers. IEEE Commun. Surv. Tutorials 14(4), 1021–1036 (2012)

    Article  Google Scholar 

  2. Tanaka, T., Hirano, A., Jinno, M.: Impact of multi-flow transponder on equipment requirements in IP over elastic optical networks. In: Proceedings of the ECOC, We.1.E.3 (2013)

  3. Zhu, Y., Jue, J.P.: Reliable collective communications with weighted SRLGs in optical networks. IEEE/ACM Trans. Netw. 20(3), 851–863 (2012)

    Article  Google Scholar 

  4. Lu, W., Zhu, Z.: Dynamic service provisioning of advance reservation requests in elastic optical networks. J. Lightw. Technol. 31(10), 1621–1627 (2013)

    Article  MathSciNet  Google Scholar 

  5. Jinno, M., Takara, H., Sone, Y., Yonenaga, K., Hirano, A.: Multiflow optical transponder for efficient multilayer optical networking. IEEE Commun. Mag. 50(5), 56–65 (2012)

    Article  Google Scholar 

  6. Tanaka, T., Hirano, A., Jinno, M.: Advantages of IP over elastic optical networks using multi-flow transponders from cost and equipment count aspects. Opt. Exp. 22(1), 62–70 (2014)

    Article  Google Scholar 

  7. Cianfrani, A., Eramo, V., Listanti, M., Polverini, M., Vasilakos, A.V.: An OSPF-integrated routing strategy for QoS-aware energy saving in IP backbone networks. IEEE Trans. Netw. Serv. Man. 9(3), 254–267 (2012)

    Article  Google Scholar 

  8. Contreras, L.M., López, V., González de Dios, O., Tovar, A., Muñoz, F., Azañón, A., Fernández-Palacios, J.P., Folgueira, J.: Towards cloud-ready transport networks. IEEE Commun. Mag. 50(9), 48–55 (2012)

    Article  Google Scholar 

  9. Gerstel, O., Jinno, M., Lord, A., Yoo, S.J.B.: Elastic optical networking: a new dawn for the optical layer? IEEE Commun. Mag. 50(2), s12–s20 (2012)

    Article  Google Scholar 

  10. Shen, G., Deng, J., Ho, P.: Green backbone optical networks: the way forward. In: Proceeding of the ICICS, Invited Paper (2011)

  11. Yang, H., Zhao, Y., Zhang, J., et al.: Cross stratum optimization of application and network resource based on global load balancing strategy in dynamic optical networks. In: Proceedings of the OFC/NFOEC, Los Angeles, JTh2A.38 (2012)

  12. Yang, H., Zhao, Y., Zhang, J., Wang, S., Gu, W., Ji, Y., Han, J., Lin, Y., Lee, Y.: Multi-stratum resource integration for OpenFlow-based data center interconnect [invited]. J. Opt. Commun. Netw. 5(10), A240–A248 (2013)

    Article  Google Scholar 

  13. Guo, B., Huang, S., Luo, P., Huang, H., Zhang, J., Gu, W.: Dynamic survivable mapping in IP over WDM network. J. Lightw. Technol. 29(9), 1274–1284 (2011)

    Article  Google Scholar 

  14. Chiu, A., Choudhury, G., Feuer, M., Strand, J., Woodward, S.: Integrated restoration for next-generation IP-over-optical networks. J. Lightw. Technol. 29(6), 916–924 (2011)

    Article  Google Scholar 

  15. Wang, J., Vokkarane, V.M., Jothi, R., Qi, X., Raghavachari, B., Jue, J.P.: Dual-homing protection in IP-over-WDM networks. J. Lightw. Technol. 23(10), 3111–3124 (2005)

    Article  Google Scholar 

  16. Habib, M.F., Tornatore, M., Leenheer, M.D., Dikbiyik, F., Mukherjee, B.: Design of disaster-resilient optical datacenter networks. J. Lightw. Technol. 30(16), 2563–2573 (2012)

    Article  Google Scholar 

  17. Sone, Y., et al.: Bandwidth squeezed restoration in spectrum-sliced elastic optical path networks (SLICE). J. Opt. Commun. Netw. 3, 223–233 (2012)

    Article  Google Scholar 

  18. Liu, M., et al.: Survivable traffic grooming in elastic optical networks-shared protection. J. Lightw. Technol. 31, 903–909 (2013)

    Article  Google Scholar 

  19. Ji, F., et al.: Dynamic p-Cycle protection in spectrum-sliced elastic optical networks. J. Lightw. Technol. 32(6), 1190–1199 (2014)

    Article  Google Scholar 

  20. Kumaki, K., Ed.: Interworking Requirements to Support Operation of MPLS-TE Over GMPLS Networks, IETF RFC 5146 (Mar. 2008)

  21. Das, S., Parulkar, G., McKeown, N.: Why OpenFlow/SDN can succeed where GMPLS failed. In: Proceedings of the ECOC, Tu.1.D.1 (2012)

  22. Liu, L., Zhang, D., Tsuritani, T., Vilalta, R., Casellas, R., Hong, L., Morita, I., Guo, H., Wu, J., Martínez, R., Muñoz, R.: Field trial of an OpenFlow-based unified control plane for multilayer multi granularity optical switching networks. J. Lightw. Technol. 31(4), 506–514 (2013)

    Article  Google Scholar 

  23. Liu, L., Muñoz, R., Casellas, R., Tsuritani, T., Martínez, R., Morita, I.: OpenSlice: an OpenFlow-based control plane for spectrum sliced elastic optical path networks. Opt. Exp. 21(4), 4194–4204 (2013)

    Article  Google Scholar 

  24. Channegowda, M., Nejabati, R., Rashidifard, M., et al.: Experimental demonstration of an OpenFlow based software-defined optical network employing packet, fixed and flexible DWDM grid technologies on an international multi-domain testbed. Opt. Exp. 21(5), 5487–5498 (2013)

    Article  Google Scholar 

  25. Yang, H., Zhao, Y., Zhang, J., Wang, S., Gu, W., Han, J., Lin, Y., Lee, Y.: Multi-stratum resources integration for data center application based on multiple OpenFlow controllers cooperation. In: Proceedings of the OFC/NFOEC, NTu3F.7 (2013)

  26. Zhang, J., Yang, H., Zhao, Y., Ji, Y., et al.: Experimental demonstration of elastic optical networks based on enhanced software defined networking (eSDN) for data center application. Opt. Exp. 21(22), 26990–27002 (2013)

  27. Yang, H., Zhang, J., Zhao, Y., Ji, Y., Han, J., Lin, Y., Qiu, S., Lee, Y.: Experimental Demonstration of time-aware software defined networking for OpenFlow-based optical interconnect in intra-datacenter networks. In: Proceedings of the IEEE GLOBECOM, WS-CCSNA, pp. 440–444 (2013)

  28. Liu, L., Casellas, R., Tsuritani, T., Morita, I., Martínez, R., Muñoz, R.: Experimental demonstration of an OpenFlow/PCE integrated control plane for IP over translucent WSON with the assistance of a per-request-based dynamic topology server. Opt. Express 21(4), 4183–4193 (2013)

    Article  Google Scholar 

  29. Yang, H., Zhang, J., Zhao, Y., Li, H., Huang, S., Ji, Y., Han, J., Lin, Y., Lee, Y.: Cross stratum resilience for OpenFlow-enabled data center interconnected by flexi-grid optical networks. Opt. Switch. Netw. 11(1), 72–82 (2014)

    Article  Google Scholar 

  30. Zhang, J., Zhao, Y., Yang, H., Ji, Y., Li, H., Lin, Y., Li, G., Han, J., Lee, Y., Ma, T.: First demonstration of enhanced software defined networking (eSDN) over elastic Grid (eGrid) optical networks for data center service migration. In: Proceedings of the OFC/NFOEC, PDP5B.1 (2013)

Download references

Acknowledgments

This work has been supported in part by 863 program (2012AA011301), 973 program (2010CB328204), NSFC project (61271189, 61201154, and 60932004), RFDP Project (20120005120019), the Fundamental Research Funds for the Central Universities (2013RC1201), BUPT Excellent Ph.D. Students Foundation (CX201332), and Fund of State Key Laboratory of Information Photonics and Optical Communications (BUPT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Zhao, Y., Zhang, J. et al. Multi-stratum resources resilience in software defined data center interconnection based on IP over elastic optical networks. Photon Netw Commun 28, 58–70 (2014). https://doi.org/10.1007/s11107-014-0440-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11107-014-0440-8

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy