Abstract
Mapping wheat nitrogen (N) uptake at 5 m spatial resolution could provide growers with new insights regarding nitrogen-use efficiency at the field scale. This study explored the use of spectral information from high resolution (5 × 5 m) RapidEye satellite data at peak leaf area index (LAI) to estimate end-of-season cumulative N uptake of wheat (Triticum spp.) in a heterogeneous, rainfed system. The primary objectives were to evaluate the usefulness of simple, widely used vegetation indices (VIs) from RapidEye as a tool to map crop N uptake over three growing seasons, farms and growing conditions, and to examine the usefulness of remotely sensed N uptake maps for precision agriculture applications. Data on harvested wheat N was collected at twelve plots over three seasons at four farms in the Palouse region of Northern Idaho and Eastern Washington. Seventeen commonly used spectral VIs were computed for images collected during ‘peak greenness’ (maximum LAI) to determine which VIs would be most appropriate for estimating wheat N uptake at harvest. The normalized difference red-edge index was the top performing VI, explaining 81 % of the variance in wheat N uptake with a regression slope of 1.06 and RMSE of 15.94 kg/ha. Model performance was strong across all farms over all three seasons regardless of crop variety, allowing the creation of high accuracy wheat N uptake maps. In conclusion, for this particular agro-ecosystem, mid-season VIs that incorporate the use of the NIR and red-edge bands are generally better predictors of end-of-season crop N uptake than VIs that do not include these bands, thereby further enabling their use in precision agriculture applications.






Similar content being viewed by others
References
Adelabu, S., Mutanga, O., & Adam, E. (2014). Evaluating the impact of red-edge band from Rapideye image for classifying insect defoliation levels. ISPRS Journal of Photogrammetry and Remote Sensing, 95, 34–41. doi:10.1016/j.isprsjprs.2014.05.013.
Baret, F., & Fourty, T. (1997). Radiometric estimates of nitrogen status of leaves and canopies. In G. Lemaire (Ed.), Diagnosis of nitrogen status in crops (pp. 201–227). Heidelberg: Springer.
Baret, F., Houlès, V., & Guérif, M. (2007). Quantification of plant stress using remote sensing observations and crop models: The case of nitrogen management. Journal of Experimental Botany, 58(4), 869–880. doi:10.1093/jxb/erl231.
Basso, B., Fiorentino, C., Cammarano, D., & Schulthess, U. (2016). Variable rate nitrogen fertilizer response in wheat using remote sensing. Precision Agriculture, 17(2), 168–182. doi:10.1007/s11119-015-9414-9.
Bertheloot, J., Martre, P., & Andrieu, B. (2008). Dynamics of light and nitrogen distribution during grain filling within wheat canopy. Plant Physiology, 148(11), 1707–1720. doi:10.1104/pp.108.124156.
Broge, N. H., & Leblanc, E. (2001). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76, 156–172.
Brown, M. E., Pinzón, J. E., Didan, K., Morisette, J. T., & Tucker, C. J. (2006). Evaluation of the consistency of long-term NDVI time series derived from AVHRR, and landsat ETM + sensors. IEEE Transactions on Geoscience and Remote Sensing, 44(7), 1787–1793.
Busacca, A. J., Cook, C. A., & Mulla, D. J. (1993). Comparing landscape-scale estimation of soil erosion in the Palouse using Cs-137 and RUSLE. Journal of Soil and Water Conservation, 48(4), 361–367.
Cammarano, D., Fitzgerald, G., Basso, B., O’Leary, G., Chen, D., Grace, P., et al. (2011). Use of the canopy chlorophyl content index (CCCI) for remote estimation of wheat nitrogen content in rainfed environments. Agronomy Journal, 103(6), 1597. doi:10.2134/agronj2011.0124.
Carpenter, G. A., Gopal, S., Macomber, S., Martens, S., Woodcock, C. E., & Franklin, J. (1994). A neural network method for efficient vegetation mapping. Remote Sensing of Environment, 70, 326–338.
Carter, G. A., & Knapp, A. K. (2001). Leaf optical properties in higher plants: Linking spectral characteristics to stress and chlorophyll concentration. American Journal of Botany, 88(4), 677–684. doi:10.2307/2657068.
Carter, G. A., & Miller, R. L. (1994). Early detection of plant stress by digital imaging within narrow stress-sensitive wavebands. Remote Sensing of Environment, 50(3), 295–302. doi:10.1016/0034-4257(94)90079-5.
Cate, R. B., & Nelson, L. A. (1971). A simple statistical procedure for partitioning soil test correlation data into two classes. Soil Science Society of America Proceedings, 35, 658–660.
Chen, P., Tremblay, N., Wang, J., & Vigneaulta, P. (2010). New index for crop canopy fresh biomass estimation. Spectroscopy and Spectral Analysis, 30, 512–517.
Daughtry, C., Walthall, C., Kim, M., De Colstoun, E. B., & McMurtreyIII, J. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74(2), 229–239. doi:10.1016/S0034-4257(00)00113-9.
Defries, R. S., & Chan, J. C. (2000). Multiple criteria for evaluating machine learning algorithms for land cover classification from satellite data. Remote Sensing of Environment, 74, 503–515.
Delegido, J., Verrelst, J., Alonso, L., & Moreno, J. (2011). Evaluation of sentinel-2 Red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors, 11(7), 7063–7081. doi:10.3390/s110707063.
Diacono, M., Rubino, P., & Montemurro, F. (2012). Precision nitrogen management of wheat. A review. Agronomy for Sustainable Development, 33(1), 219–241. doi:10.1007/s13593-012-0111-z.
Dungan, J. L., Perry, J. N., Dale, M. R. T., Legendre, P., Fortin, M., Jakomulska, A., et al. (2002). A balanced view of scale in spatial statistical analysis. Ecography, 25(5), 626–640.
Eitel, J., Keefe, R., Long, D., Davis, A., & Vierling, L. A. (2010). Active ground optical remote sensing for improved monitoring of seedling stress in nurseries. Sensors, 10(4), 2843–2850. doi:10.3390/s100402843.
Eitel, J. U. H., Long, D. S., Gessler, P. E., & Hunt, E. R. (2008). Combined spectral index to improve ground-based estimates of nitrogen status in dryland wheat. Agronomy Journal,. doi:10.2134/agronj2007.0362.
Eitel, J. U. H., Long, D. S., Gessler, P. E., Hunt, E. R., & Brown, D. J. (2009). Sensitivity of ground-based remote sensing estimates of wheat chlorophyll content to variation in soil reflectance. Soil Science Society of America Journal, 73(5), 1715. doi:10.2136/sssaj2008.0288.
Eitel, J. U. H., Long, D. S., Gessler, P. E., & Smith, A. M. S. (2007). Using in situ measurements to evaluate the new RapidEyeTM satellite series for prediction of wheat nitrogen status. International Journal of Remote Sensing, 28(18), 4183–4190. doi:10.1080/01431160701422213.
Eitel, J. U. H., Magney, T. S., Vierling, L. A., Brown, T. T., & Huggins, D. R. (2014a). LiDAR based biomass and crop nitrogen estimates for rapid, non-destructive assessment of wheat nitrogen status. Field Crops Research, 159, 21–32.
Eitel, J. U. H., Magney, T. S., Vierling, L. A., & Dittmar, G. (2014b). Assessment of crop foliar nitrogen using a novel dual-wavelength laser system and implications for conducting laser-based plant physiology. ISPRS Journal of Photogrammetry and Remote Sensing, 97, 229–240. doi:10.1016/j.isprsjprs.2014.09.009.
Eitel, J. U. H., Vierling, L. A., Litvak, M. E., Long, D. S., Schulthess, U., Ager, A. A., et al. (2011). Broadband, red-edge information from satellites improves early stress detection in a New Mexico conifer woodland. Remote Sensing of Environment, 115(12), 3640–3646. doi:10.1016/j.rse.2011.09.002.
Engel, R. E., Long, D. S., Carlson, G. R., & Meier, C. (1999). Method for precision nitrogen management in spring wheat: I Fundamental relationships. Precision Agriculture, 1, 327–338.
Evans, J. R. (1983). Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.). Plant Physiology, 72(2), 297–302.
Evans, J. R. (1989). Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia, 78, 9–19.
Farooq, M., Bramley, H., Palta, J. A., & Siddique, K. H. M. (2011). Heat stress in wheat during reproductive and grain-filling phases. Critical Reviews in Plant Sciences, 30, 1–17. doi:10.1080/07352689.2011.615687.
Farooq, M., Hussain, M., & Siddique, K. H. M. (2014). Drought stress in wheat during flowering and grain-filling periods. Critical Reviews in Plant Sciences, 33, 331–349. doi:10.1080/07352689.2014.875291.
Filella, I., Serrano, L., Serra, J., & Penuelas, J. (1995). Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop Science, 35(5), 1400–1405.
Fitzgerald, G., Rodriguez, D., & O’Leary, G. (2010). Measuring and predicting canopy nitrogen nutrition in wheat using a spectral index—The canopy chlorophyll content index (CCCI). Field Crops Research, 116(3), 318–324. doi:10.1016/j.fcr.2010.01.010.
Gates, D. M. (1965). Spectral properties of plants. Applied Optics, 4, 11–20.
Gitelson, A. A., Gritz, Y., & Merzlyak, M. N. (2003). Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. Journal of Plant Physiology, 160(3), 271–282. doi:10.1078/0176-1617-00887.
Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58, 289–298.
Gitelson, A. A., Kaufmanb, Y. J., Starkc, R., & Rundquist, D. (2002). Novel algorithms for remote estimation of vegetation fraction. Remote Sensing of Environment, 80, 76–87.
Gitelson, A. A., & Merzlyak, M. N. (1994a). Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. Journal of Photochemistry and Photobiology B: Biology, 22(3), 247–252. doi:10.1016/1011-1344(93)06963-4.
Gitelson, A. A., & Merzlyak, M. N. (1994b). Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. Leaves. Spectral features and relation to chlorophyll estimation. Journal of Plant Physiology, 143(3), 286–292. doi:10.1016/S0176-1617(11)81633-0.
Gitelson, A. A., Peng, Y., Arkebauer, T. J., & Schepers, J. (2014). Relationships between gross primary production, green LAI, and canopy chlorophyll content in maize: Implications for remote sensing of primary production. Remote Sensing of Environment, 144, 65–72. doi:10.1016/j.rse.2014.01.004.
Gitelson, A. A., Peng, Y., Masek, J. G., Rundquist, D. C., Verma, S., Suyker, A., et al. (2012). Remote estimation of crop gross primary production with Landsat data. Remote Sensing of Environment, 121, 404–414. doi:10.1016/j.rse.2012.02.017.
Haboudane, D., Miller, J. R., Pattey, E., Zarco-tejada, P. J., & Strachan, I. B. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90, 337–352. doi:10.1016/j.rse.2003.12.013.
Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., & Dextraze, L. (2002). Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81(2–3), 416–426. doi:10.1016/S0034-4257(02)00018-4.
Hansen, P. M., & Schjoerring, J. K. (2003). Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sensing of Environment, 86(4), 542–553. doi:10.1016/S0034-4257(03)00131-7.
Hijmans, R. J., van Etten, J. (2015). Raster: Geographic Data Analysis. R package version 2.2-31.
Hively, W. D., Lang, M., McCarty, G. W., Keppler, J., Sadeghi, A., & McConnell, L. L. (2009). Using satellite remote sensing to estimate winter cover crop nutrient uptake efficiency. Journal of Soil and Water Conservation, 64(5), 303–313. doi:10.2489/jswc.64.5.303.
Huang, J., Wang, X., Li, X., Tian, H., & Pan, Z. (2013). Remotely sensed rice yield prediction using multi-temporal NDVI data derived from NOAA’s-AVHRR. PLoS One, 8(8), 1–13. doi:10.1371/journal.pone.0070816.
Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 309, 295–309.
Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83, 195–213.
Huggins, D. R., & Pan, W. L. (1993). Nitrogen efficiency component analysis: An evaluation of cropping system differences in productivity. Agronomy Journal, 85, 898–905.
Huggins, D. R., Pan, W. L., & Smith, J. (2010). Yield, protein and nitrogen use efficiency of spring wheat: Evaluating field-scale performance. CSANR Research Report, 2010–001(001), 1–24.
Hunt, E. R., Daughtry, C. S. T., Eitel, J. U. H., & Long, D. S. (2011). Remote sensing leaf chlorophyll content using a visible band index. Agronomy Journal, 103(4), 1090–1099. doi:10.2134/agronj2010.0395.
Inoue, Y., Sakaiya, E., Zhu, Y., & Takahashi, W. (2012). Diagnostic mapping of canopy nitrogen content in rice based on hyperspectral measurements. Remote Sensing of Environment, 126, 210–221. doi:10.1016/j.rse.2012.08.026.
Jordan, C. F. (1969). Derivation of leaf-area index from quality of light on the forest floor. Ecology, 50, 663–666.
Knyazikhin, Y., Schull, M. A., Stenberg, P., Mõttus, M., Rautiainen, M., Yang, Y., et al. (2013). Hyperspectral remote sensing of foliar nitrogen content. Proceedings of the National Academy of Sciences of the United States of America, 110(3), E185–E192. doi:10.1073/pnas.1210196109.
Kross, A., McNairn, H., Lapen, D., Sunohara, M., & Champagne, C. (2015). Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. International Journal of Applied Earth Observation and Geoinformation, 34, 235–248. doi:10.1016/j.jag.2014.08.002.
Lemaire, G., Jeuffroy, M. H., & Gastal, F. (2008). Diagnosis tool for plant and crop N status in vegetative stage. Theory and practices for crop N management. European Journal of Agronomy, 28(4), 614–624. doi:10.1016/j.eja.2008.01.005.
Liu, J., Pattey, E., & Jégo, G. (2012). Assessment of vegetation indices for regional crop green LAI estimation from Landsat images over multiple growing seasons. Remote Sensing of Environment, 123, 347–358. doi:10.1016/j.rse.2012.04.002.
Long, D. S., Engel, R. E., & Carlson, G. (2000). Method for precision nitrogen management in spring wheat: II implementation. Precision Agriculture, 2, 25–38.
Long, D. S., McCallum, J. D., & Scharf, P. A. (2013). Optical-mechanical system for on-combine segregation of wheat by grain protein concentration. Agronomy Journal, 105(6), 1529–1535. doi:10.2134/agronj2013.0206.
Long, D. S., Whitmus, J. D., Engel, R. E., & Brester, G. W. (2015). Net returns from terrain-based variable-rate nitrogen management on dryland spring wheat in Northern Montana. Agronomy Journal, 107(3), 1055–1067. doi:10.2134/agronj14.0331.
Louhaichi, M., Borman, M. M., & Johnson, D. E. (2001). Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto International, 16, 65–70.
MacQueen, J. (1967). Some methods for classification and analysis of multivariate observations. In L. M. Le Cam & J. Neyman (Eds.), Proceedings of the 5th Berkely Symposium on Mathematical Statistics and Probability (pp. 281–297). Berkely, CA: University of California Press.
Magney, T. S., Eitel, J. U. H., Vierling, L. A., & Huggins, D. R. (2016a). Proximal NDVI derived phenology improves in-season predictions of wheat quantity and quality. Agricultural and Forest Meteorology, 217, 46–60. doi:10.1016/j.agrformet.2015.11.009.
Magney, T. S., Vierling, L. A., Eitel, J. U. H., Huggins, D. R., & Garrity, S. R. (2016b). Response of high frequency Photochemical Reflectance Index (PRI) measurements to environmental conditions in wheat. Remote Sensing of Environment, 173, 84–97. doi:10.1016/j.rse.2015.11.013.
Mamo, M., Malzer, G. L., Mulla, D. J., Huggins, D. R., & Strock, J. (2003). Spatial and temporal variation in economically optimum nitrogen rate for corn. Agronomy Journal, 95(4), 958–964. doi:10.2134/agronj2003.0958.
Masclaux-Daubresse, C., Daniel-Vedele, F., Dechorgnat, J., Chardon, F., Gaufichon, L., & Suzuki, A. (2010). Nitrogen uptake, assimilation and remobilization in plants: Challenges for sustainable and productive agriculture. Annals of Botany, 105(7), 1141–1157. doi:10.1093/aob/mcq028.
Mueller, N. D., Gerber, J. S., Johnston, M., Ray, D. K., Ramankutty, N., & Foley, J. A. (2012). Closing yield gaps through nutrient and water management. Nature, 490(7419), 254–257. doi:10.1038/nature11420.
Mulla, D. J. (2013). Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosystems Engineering, 114(4), 358–371. doi:10.1016/j.biosystemseng.2012.08.009.
Nakaji, T., Oguma, H., & Fujinuma, Y. (2006). Seasonal changes in the relationship between photochemical reflectance index and photosynthetic light use efficiency of Japanese larch needles. International Journal of Remote Sensing, 27(3), 493–509.
Ortiz, S., Breidenbach, J., & Kändler, G. (2013). Early detection of bark beetle green attack using TerraSAR-X and RapidEye data. Remote Sensing, 5(4), 1912–1931. doi:10.3390/rs5041912.
Perry, E. M., Fitzgerald, G. J., Nuttall, J. G., O’Leary, G. J., Schulthess, U., & Whitlock, A. (2012). Rapid estimation of canopy nitrogen of cereal crops at paddock scale using a canopy chlorophyll content index. Field Crops Research, 134, 158–164. doi:10.1016/j.fcr.2012.06.003.
Pittman, K., Hansen, M. C., Becker-Reshef, I., Potapov, P. V., & Justice, C. O. (2010). Estimating global cropland extent with multi-year MODIS data. Remote Sensing, 2(7), 1844–1863. doi:10.3390/rs2071844.
Qi, J., Chehbouni, A., Huete, A. R., Kerr, Y. H., & Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote Sensing of Environment, 48, 119–126. doi:10.1016/0034-4257(94)90134-1.
Robertson, G. P., & Vitousek, P. M. (2009). Nitrogen in agriculture: Balancing the cost of an essential resource. Annual Review of Environment and Resources, 34(1), 97–125. doi:10.1146/annurev.environ.032108.105046.
Rodriguez, D., Fitzgerald, G. J., Belford, R., & Christensen, L. K. (2006). Detection of nitrogen deficiency in wheat from spectral reflectance indices and basic crop eco-physiological concepts. Australian Journal of Agricultural Research, 57(7), 781–789. doi:10.1071/AR05361.
Sadler, E. J., Evans, R. G., Stone, K. C., & Camp, C. R. (2005). Opportunities for conservation with precision irrigation. Journal of Soil and Water Conservation, 60(6), 371–379.
Salas, E., & Henebry, G. (2013). A new approach for the analysis of hyperspectral data: Theory and sensitivity analysis of the moment distance method. Remote Sensing, 6(1), 20–41. doi:10.3390/rs6010020.
Scharf, P. C., Schmidt, J. P., Kitchen, N. R., Sudduth, K. A., Hong, S. Y., Lory, J. A., et al. (2002). Remote sensing for nitrogen management. Journal of Soil and Water Conservation, 57(6), 518–524.
Schönert, M., Zillmann, E., Weichelt, H., Eitel, J. U. H., Magney, T. S., Lilienthal, H., et al. (2015). The Tasseled Cap Transformation for RapidEye data and the estimation of vital and senescent crop parameters. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(7), 101–108. doi:10.5194/isprsarchives-XL-7-W3-101-2015.
Schuster, C., Förster, M., & Kleinschmit, B. (2012). Testing the red edge channel for improving land-use classifications based on high-resolution multi-spectral satellite data. International Journal of Remote Sensing, 33(17), 5583–5599. doi:10.1080/01431161.2012.666812.
Söderström, M., Börjesson, T., Pettersson, C. G., Nissen, K., & Hagner, O. (2010). Prediction of protein content in malting barley using proximal and remote sensing. Precision Agriculture, 11(6), 587–599. doi:10.1007/s11119-010-9181-6.
Stage, A. R., & Crookston, N. L. (2007). Partitioning error components for accuracy-assessment of near-neighbor methods of imputation. Forest Science, 53(1), 62–72.
Strahler, A. H., Woodcock, C. E., & Smith, J. A. (1986). On the nature of models in remote sensing. Remote Sensing of Environment, 20(2), 121–139. doi:10.1016/0034-4257(86)90018-0.
Sutton, M. A., Oenema, O., Erisman, J. W., Leip, A., van Grinsven, H., & Winiwarter, W. (2011). Too much of a good thing. Nature, 472(7342), 159–161. doi:10.1038/472159a.
Thenkabail, P. S. (2003). Biophysical and yield information for precision farming from near-real-time and historical Landsat TM images. International Journal of Remote Sensing, 24(14), 2879–2904. doi:10.1080/01431160710155974.
Tilling, A. K., O’Leary, G. J., Ferwerda, J. G., Jones, S. D., Fitzgerald, G. J., Rodriguez, D., et al. (2007). Remote sensing of nitrogen and water stress in wheat. Field Crops Research, 104(1–3), 77–85. doi:10.1016/j.fcr.2007.03.023.
Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150.
Tucker, C., Pinzon, J., Brown, M., Slayback, D., Pak, E., Mahoney, R., et al. (2005). An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. International Journal of Remote Sensing, 26(20), 4485–4498. doi:10.1080/01431160500168686.
Ustuner, M., Sanli, F. B., Abdikan, S., Esetlili, M. T., & Kurucu, Y. (2014). Crop type classification using vegetation indices of RapidEye imagery. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(10), 195–198. doi:10.5194/isprsarchives-XL-7-195-2014.
Verrelst, J., Camps-Valls, G., Muñoz-Marí, J., Rivera, J. P., Veroustraete, F., Clevers, J. G. P. W., et al. (2015a). Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties-A review. ISPRS Journal of Photogrammetry and Remote Sensing, 108, 273–290. doi:10.1016/j.isprsjprs.2015.05.005.
Verrelst, J., Rivera, J. P., Veroustraete, F., Muñoz-Marí, J., Clevers, J. G. P. W., Camps-Valls, G., et al. (2015b). Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods-A comparison. ISPRS Journal of Photogrammetry and Remote Sensing, 108, 260–272. doi:10.1016/j.isprsjprs.2015.04.013.
Viña, A., & Gitelson, A. A. (2005). New developments in the remote estimation of the fraction of absorbed photosynthetically active radiation in crops. Geophysical Research Letters, 32, 1–4. doi:10.1029/2005GL023647.
Vincenzi, S., Zucchetta, M., Franzoi, P., Pellizzato, M., Pranovi, F., De Leo, G. A., et al. (2011). Application of a Random Forest algorithm to predict spatial distribution of the potential yield of Ruditapes philippinarum in the Venice lagoon, Italy. Ecological Modelling, 222(8), 1471–1478. doi:10.1016/j.ecolmodel.2011.02.007.
Vincini, M., & Frazzi, E. (2011). Comparing narrow and broad-band vegetation indices to estimate leaf chlorophyll content in planophile crop canopies. Precision Agriculture, 12, 334–344. doi:10.1007/s11119-010-9204-3.
Woodcock, C. E., & Strahler, A. H. (1987). The factor of scale in remote sensing. Remote Sensing of Environment, 21(3), 311–332. doi:10.1016/0034-4257(87)90015-0.
Xin, Q., Gong, P., Yu, C., Yu, L., Broich, M., Suyker, A., et al. (2013). A production efficiency model-based method for satellite estimates of corn and soybean yields in the midwestern US. Remote Sensing, 5(11), 5926–5943. doi:10.3390/rs5115926.
Yu, K., Li, F., Gnyp, M. L., Miao, Y., Bareth, G., & Chen, X. (2013). Remotely detecting canopy nitrogen concentration and uptake of paddy rice in the Northeast China Plain. ISPRS Journal of Photogrammetry and Remote Sensing, 78, 102–115. doi:10.1016/j.isprsjprs.2013.01.008.
Acknowledgments
Many thanks to Sam Finch, Jyoti Jennewein, Dave Uberaga, and Leanna Dann for experimental design and field support, and Drs. David R. Huggins, Erin Brooks, Caley Gasch, and David Brown for comments during previous versions and developments of this work. Images were made available through a data-for-data contract provided by RapidEye (Blackbridge: P. Rosso). We would also like to acknowledge the growers whose farms were used in this study, and for helpful insight and permission to use their land for research purposes. This research was made possible through funding provided by US Department of Agriculture National Institute of Food and Agriculture (USDA-NIFA) award 2011-637003-3034 and the NASA Idaho Space Grant Fellowship awarded to TSM (#NNX10AM75H).
Author Contributions
TSM, JUHE, and LAV designed the experiment. TSM collected ground validation data. TSM conducted the analysis. TSM, JUHE, and LAV wrote the manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflicts of Interest
The authors declare no conflict of interest.
Rights and permissions
About this article
Cite this article
Magney, T.S., Eitel, J.U.H. & Vierling, L.A. Mapping wheat nitrogen uptake from RapidEye vegetation indices. Precision Agric 18, 429–451 (2017). https://doi.org/10.1007/s11119-016-9463-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11119-016-9463-8