Abstract
Suppose we are given an unsorted database with N items and N is sufficiently large. By using a simpler approximate method, we re-derive the approximate formula cos2 Φ, which represents the maximum success probability of Grover’s algorithm corresponding to the case of identical rotation angles \({\phi=\theta}\) for any fixed deflection angle \({\Phi \in\left[0,\pi/2\right)}\). We further show that for any fixed \({\Phi \in\left[0,\pi/2\right)}\), the case of identical rotation angles \({\phi=\theta}\) is energetically favorable compared to the case \({\left|{\theta - \phi}\right|\gg 0}\) for enhancing the probability of measuring a unique desired state.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Grover L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)
Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and Weaknesses of Quantum Computing, quant-ph/9701001v1
Zalka C.: Grover’s quantum searching algorithm is optimal. Phys. Rev. A 60, 2746–2751 (1999)
Farhi E., Gutmann S.: Analog analogue of a digital quantum computation. Phys. Rev. A 57, 2403–2406 (1998)
Pati, A.K.: Fast Quantum Search Algorithm and Bounds on it, quant-ph/9807067v1
Jozsa, R.: Searching in Grover’s Algorithm, quant-ph/9901021v1
Boyer, M., Brassard, G., Høyer, P., Tapp, A.: Tight Bounds on Quantum Searching, quant-ph/9605034
Grover L.K.: Quantum computers can search rapidly by using almost any transformation. Phys. Rev. Lett. 80, 4329–4332 (1998)
Brassard, G., Høyer, P., Tapp, A.: Quantum counting, quant-ph/9805082
Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum Amplitude Amplification and Estimation, quant-ph/0005055v1
Ozhigov, Y.: Speedup of iterated quantum search by parallel performance, quant-ph/9904039v4
Gingrich R., Williams C.P., Cerf N.: Generalized quantum search with parallelism. Phys. Rev. A 61, 052313 (2000)
Long G.L., Li Y.S., Zhang W.L., Niu L.: Phase matching in quantum searching. Phys. Lett. A 262, 27–34 (1999)
Biham E., Biham O., Biron D., Grassl M., Lidar D.A.: Grover’s quantum search algorithm for an arbitrary initial amplitude distribution. Phys. Rev. A 60, 2742–2745 (1999)
Biham E., Biham O., Biron D., Grassl M., Lidar D.A., Shapira D.: Analysis of generalized Grover quantum search algorithms using recursion equations. Phys. Rev. A 63, 012310 (2000)
Carlini, A., Hosoya, A.: Quantum Computers and Unstructured Search: Finding and Counting Items with an Arbitrarily Entangled Initial State, quant-ph/9909089
Long, G.L., Xiao, L., Sun, Y.: General phase matching condition for quantum searching, quant-ph/0107013v1
Høyer P.: Arbitrary phases in quantum amplitude amplification. Phys. Rev. A 62, 052304 (2000)
Li C.M., Hwang C.C., Hsieh J.Y., Wang K.S.: General phase-matching condition for a quantum searching algorithm. Phys. Rev. A 65, 034305 (2002)
Hsieh J.Y., Li C.M.: General SU(2) formulation for quantum searching with certainty. Phys. Rev. A 65, 052322 (2002)
Li D.F., Li X.X.: More general quantum search algorithm Q = −I γ VI τ U and the precise formula for the amplitude and the non-symmetric effects of different rotating angles. Phys. Lett. A 287, 304–316 (2001)
Bhattacharya N., van Linden van den Heuvell H.B., Spreeuw R.J.C.: Implementation of quantum search algorithm using classical fourier optics. Phys. Rev. Lett. 88, 137901 (2002)
Long G.L., Yan H.Y., Li Y.S., Tu C.C., Tao J.X., Chen H.M., Liu M.L., Zhang X., Luo J., Xiao L., Zeng X.Z.: Experimental NMR realization of a generalized quantum search algorithm. Phys. Lett. A 286, 121–126 (2001)
Jin, W.L., Chen, X.D.: A desired state can not be found with certainty for Grover’s algorithm in a possible three-dimensional complex subspace. Quantum Inf. Process. doi:10.1007/s11128-010-0209-7, Online First (2010)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Jin, W. Quantum search in a possible three-dimensional complex subspace. Quantum Inf Process 11, 41–54 (2012). https://doi.org/10.1007/s11128-011-0230-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-011-0230-5