Abstract
We obtain the set of all detector configurations providing the maximal violation of the Bell inequality in the Clauser–Horne–Shimony–Holt form for a general (pure or mixed) state of two qubits. Next, we analyze optimal conditions for the Bell-inequality violations in the presence of local decoherence, which includes energy relaxation at the zero temperature and arbitrary pure dephasing. We reveal that in most cases the Bell inequality violation is maximal for the “even” two-qubit state. Combined effects of measurement errors and decoherence on the Bell inequality violation are also discussed.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Alicki R., Lendi K.: Quantum Dynamical Semigroups and Applications. Springer, Berlin (1987)
Altepeter J.B., Jeffrey E.R., Kwiat P.G.: Phase-compensated ultra-bright source of entangled photons. Opt. Express 13, 8951–8959 (2005)
Ann K., Jaeger G.: Generic tripartite Bell nonlocality sudden death under local phase noise. Phys. Lett. A 372, 6853–6858 (2008)
Ansmann M., Wang H., Bialczak R.C., Hofheinz M., Lucero E., Neeley M., O’Connell A.D., Sank D., Weides M., Wenner J., Cleland A.N., Martinis J.M.: Violation of Bell’s inequality in Josephson phase qubits. Nature 461, 504–506 (2009)
Aspect A.: Bell’s theorem: the naive view of an experimentalist. In: Bertlmann, R.A., Zeilinger, A. (eds) Quantum [Un]speakables—From Bell to Quantum Information, pp. 119–153. Springer, Berlin (2002)
Aspect A., Dalibard J., Roger G.: Experimental test of Bell inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804–1807 (1982)
Aspect A., Grangier P., Roger G.: Experimental tests of realistic local theories via Bell’s theorem. Phys. Rev. Lett. 47, 460–463 (1981)
Aspect A., Grangier P., Roger G.: Experimental realization of Einstein–Podolsky–Rosen–Bohm gedankenexperiment—a new violation of Bell inequalities. Phys. Rev. Lett. 49, 91–94 (1982)
Ban M.: Decoherence of qubit entanglement caused by transient environments. J. Phys. B 40, 689–696 (2007)
Beenakker C.W.J., Emary C., Kindermann M., van Velsen J.L.: Proposal for production and detection of entangled electron-hole pairs in a degenerate electron gas. Phys. Rev. Lett. 91, 147,901 (2003)
Bell J.S.: On the Einstein Podolosky Rosen paradox. Physics 1, 195–200 (1964)
Bell J.S.: Introduction to the hidden-variable question. In: d’Espagnat, B. (eds) Foundations of Quantum Mechanics, pp. 171–181. Academic, New York (1971)
Berkley A.J., Xu H., Ramos R.C., Gubrud M.A., Strauch F.W., Johnson P.R., Anderson J.R., Dragt A.J., Lobb C.J., Wellstood F.C.: Entangled macroscopic quantum states in two superconducting qubits. Science 300, 1548–1550 (2003)
Braunstein S.L., Mann A., Revzen M.: Maximal violation of Bell inequalities for mixed states. Phys. Rev. Lett. 68, 3259–3261 (1992)
Capasso V., Fortunato D., Selleri F.: Sensitive observables of quantum mechanics. Int. J. Theor. Phys. 7, 319–326 (1973)
Cirel’son B.S.: Quantum generalizations of Bell’s-inequality. Lett. Math. Phys. 4, 93–106 (1980)
Claudon J., Balestro F., Hekking F.W.J., Buisson O.: Coherent oscillations in a superconducting multilevel quantum system. Phys. Rev. Lett. 93, 187,003 (2004)
Clauser J.F., Horne M.A., Shimony A., Holt R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–883 (1969)
Cohen-Tannoudji C., Dupont-Roc J., Grynberg G.: Atom-Photon Interactions. Wiley, New York (1992)
Eberhard P.H.: Background level and counter efficiencies required for a loophole-free Einstein–Podolsky–Rosen experiment. Phys. Rev. A 47, R747–R750 (1993)
Einstein A., Podolsky B., Rosen N.: Can quantum-mechanical description of physical reality be considered complete?. Phys. Rev. 47, 777–780 (1935)
Ekert A.K.: Quantum cryptography based on Bell theorem. Phys. Rev. Lett. 67, 661–663 (1991)
Gisin N.: Bell inequality holds for all non-product states. Phys. Lett. A 154, 201–202 (1991)
Hasegawa Y., Loidl R., Badurek G., Baron M., Rauch H.: Violation of a Bell-like inequality in single-neutron interferometry. Nature 425, 45–48 (2003)
Hill S., Wootters W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022–5025 (1997)
Hioe F.T., Eberly J.H.: N-level coherence vector and higher conservation-laws in quantum optics and quantum-mechanics. Phys. Rev. Lett. 47, 838–841 (1981)
Horodecki R., Horodecki P., Horodecki M.: Violating Bell inequality by mixed spin-1/2 states—necessary and sufficient condition. Phys. Lett. A 200, 340–344 (1995)
Ionicioiu, R., Zanardi, P., Rossi, F.: Testing Bell’s inequality with ballistic electrons in semiconductors. Phys. Rev. A 63, 050,101(R) (2001)
Jakóbczyk L., Jamróz A.: Entanglement and nonlocality versus spontaneous emission in two-atom systems. Phys. Lett. A 318, 318–326 (2003)
Jakóbczyk L., Jamróz A.: Noise-induced finite-time disentanglement in two-atomic system. Phys. Lett. A 333, 35–45 (2004)
Jamróz A.: Local aspects of disentanglement induced by spontaneous emission. J. Phys. A 39, 7727–7735 (2006)
Kofman A.G., Korotkov A.N.: Analysis of Bell inequality violation in superconducting phase qubits. Phys. Rev. B 77, 104,502 (2008)
Kofman A.G., Korotkov A.N.: Bell-inequality violation versus entanglement in the presence of local decoherence. Phys. Rev. A 77, 052,329 (2008)
Kofman A.G., Zhang Q., Martinis J.M., Korotkov A.N.: Theoretical analysis of measurement crosstalk for coupled Josephson phase qubits. Phys. Rev. B 75, 014,524 (2007)
Li S.B., Xu J.B.: Entanglement, Bell violation, and phase decoherence of two atoms inside an optical cavity. Phys. Rev. A 72, 022,332 (2005)
Ling A., Peloso M.P., Marcikic I., Scarani V., Lamas-Linares A., Kurtsiefer C.: Experimental quantum key distribution based on a Bell test. Phys. Rev. A 78, 020,301 (2008)
Martinis J.M., Nam S., Aumentado J., Urbina C.: Rabi oscillations in a large Josephson-junction qubit. Phys. Rev. Lett. 89, 117,901 (2002)
Matsukevich D.N., Maunz P., Moehring D.L., Olmschenk S., Monroe C.: Bell inequality violation with two remote atomic qubits. Phys. Rev. Lett. 100, 150,404 (2008)
McDermott R., Simmonds R.W., Steffen M., Cooper K.B., Cicak K., Osborn K.D., Oh S., Pappas D.P., Martinis J.M.: Simultaneous state measurement of coupled Josephson phase qubits. Science 307, 1299–1302 (2005)
Milburn G.J.: Intrinsic decoherence in quantum mechanics. Phys. Rev. A 44, 5401–5406 (1991)
Moehring D.L., Madsen M.J., Blinov B.B., Monroe C.: Experimental Bell inequality violation with an atom and a photon. Phys. Rev. Lett. 93, 090,410 (2004)
Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Popescu S., Rohrlich D.: Generic quantum nonlocality. Phys. Lett. A 166, 293–297 (1992)
Popescu S., Rohrlich D.: Which states violate Bell’s-inequality maximally. Phys. Lett. A 169, 411–414 (1992)
Rowe M.A., Kielpinski D., Meyer V., Sackett C.A., Itano W.M., Monroe C., Wineland D.J.: Experimental violation of a Bell’s inequality with efficient detection. Nature 409, 791–794 (2001)
Samuelsson P., Buttiker M.: Dynamic generation of orbital quasiparticle entanglement in mesoscopic conductors. Phys. Rev. B 71, 245,317 (2005)
Samuelsson P., Sukhorukov E.V., Büttiker M.: Orbital entanglement and violation of Bell inequalities in mesoscopic conductors. Phys. Rev. Lett. 91, 157,002 (2003)
Santos, M.F., Milman, P., Davidovich, L., Zagury, N.: Direct measurement of finite-time disentanglement induced by a reservoir. Phys. Rev. A 73, 040,305(R) (2006)
Schlienz J., Mahler G.: Description of entanglement. Phys. Rev. A 52, 4396–4404 (1995)
Schrödinger E.: Discussion of probability relations between separated systems. Proc. Camb. Phil. Soc. 31, 555–563 (1935)
Steffen M., Ansmann M., Bialczak R.C., Katz N., Lucero E., McDermott R., Neeley M., Weig E.M., Cleland A.N., Martinis J.M.: Measurement of the entanglement of two superconducting qubits via state tomography. Science 313, 1423–1425 (2006)
Tolkunov, D., Privman, V., Aravind, P.K.: Decoherence of a measure of entanglement. Phys. Rev. A 71, 060,308(R) (2005)
Trauzettel B., Jordan A.N., Beenakker C.W.J., Buttiker M.: Parity meter for charge qubits: an efficient quantum entangler. Phys. Rev. B 73, 235,331 (2006)
van Velsen J.L., Kindermann M., Beenakker C.W.J.: Dephasing of entangled electron-hole pairs in a degenerate electron gas. Turk. J. Phys. 27, 323–330 (2003)
Verstraete F., Wolf M.M.: Entanglement versus Bell violations and their behavior under local filtering operations. Phys. Rev. Lett. 89, 170,401 (2002)
Vollbrecht K.G.H., Werner R.F.: Why two qubits are special. J. Math. Phys. 41, 6772–6782 (2000)
Wei L.F., xi Liu Y., Nori F.: Testing Bell’s inequality in a constantly coupled Josephson circuit by effective single-qubit operations. Phys. Rev. B 72, 104,516 (2005)
Wei L.F., xi Liu Y., Storcz M.J., Nori F.: Macroscopic Einstein–Podolsky–Rosen pairs in superconducting circuits. Phys. Rev. A 73, 052,307 (2006)
Weihs G., Jennewein T., Simon C., Weinfurter H., Zeilinger A.: Violation of Bell’s inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039–5043 (1998)
Werner R.F.: Quantum states with Einstein–Podolsky–Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277–4281 (1989)
Yu T., Eberly J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140,404 (2004)
Yu T., Eberly J.H.: Quantum open system theory: bipartite aspects. Phys. Rev. Lett. 97, 140,403 (2006)
Yu Y., Han S., Chu X., Chu S.I., Wang Z.: Coherent temporal oscillations of macroscopic quantum states in a Josephson junction. Science 296, 889–892 (2002)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kofman, A.G. Optimal conditions for Bell-inequality violation in the presence of decoherence and errors. Quantum Inf Process 11, 269–309 (2012). https://doi.org/10.1007/s11128-011-0242-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-011-0242-1