Skip to main content

Advertisement

Log in

On the role of a priori knowledge in the optimization of quantum information processing

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This paper explores the role of a priori knowledge in the optimization of quantum information processing by investigating optimum unambiguous discrimination problems for both the qubit and qutrit states. In general, a priori knowledge in optimum unambiguous discrimination problems can be classed into two types: a priori knowledge of discriminated states themselves and a priori probabilities of preparing the states. It is clarified that whether a priori probabilities of preparing discriminated states are available or not, what type of discriminators one should design just depends on what kind of the classical knowledge of discriminated states. This is in contrast to the observation that choosing the parameters of discriminators not only relies on the a priori knowledge of discriminated states, but also depends on a priori probabilities of preparing the states. Two types of a priori knowledge can be utilized to improve optimum performance but play the different roles in the optimization from the view point of decision theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Bennett C.H., Brassard G., Crepeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895–1898 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bouwmeester D., Pan J.W., Mattle K., Eibl M., Weinfurter H., Zeilinger A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  4. Mattle K., Weinfurter H., Kwiat P.G., Zeilinger A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656–4659 (1996)

    Article  ADS  Google Scholar 

  5. Ekert A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Bennett C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Deutsch D., Ekert A.K., Jozsa R. et al.: Quantum privacy amplification and the security of quantum cryptography over noisy channels. Phys. Rev. Lett. 77, 2818–2821 (1996)

    Article  ADS  Google Scholar 

  8. Feymann R.P.: Quantum theory, the church turing principle and the universal quantum computer. Int. J. Theor. Phys. 21, 6–7 (1982)

    Google Scholar 

  9. Shor, P.W.: Algorithms for quantum computation discretelog and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. Santa Fe, New Mexico (1994)

  10. Sleator T., Weinfurter H.: Realizable universal quantum logic gates. Phys. Rev. Lett. 74, 4087–4090 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Desurvire E.: Classical and Quantum Information Theory: Introduction for the Telecom Scientist. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  12. Nielsen M.A., Chuang I.L.: Programmable quantum gate arrays. Phys. Rev. Lett. 79, 321–324 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Vidal G., Masanes L., Cirac J.I.: Storing quantum dynamics in quantum states: a stochastic programmable gate. Phys. Rev. Lett. 88, 047905 (2002)

    Article  ADS  Google Scholar 

  14. Hillery M., Ziman M., Buzek V.: Implementation of quantum maps by programmable quantum processors. Phys. Rev. A 66, 042302 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  15. Paz J.P., Roncaglia A.: Quantum gate arrays can be programmed to evaluate the expectation value of any operator. Phys. Rev. A 68, 052316 (2003)

    Article  ADS  Google Scholar 

  16. Bergou J.A., Hillery M.: Universal programmable quantum state discriminator that is optimal for unambiguously distinguishing between unknown States. Phys. Rev. Lett. 94, 160501 (2005)

    Article  ADS  Google Scholar 

  17. Hayashi A., Horibe M., Hashimoto T.: Unambiguous pure-state identification without classical knowledge. Phys. Rev. A 73, 012328 (2006)

    Article  ADS  Google Scholar 

  18. Hayashi A., Horibe M., Hashimoto T.: Quantum pure-state identification. Phys. Rev. A 72, 052306 (2005)

    Article  ADS  Google Scholar 

  19. Zhang C., Ying M., Qiao B.: Optimal distinction between two non-orthogonal quantum states. Phys. Rev. A 74, 042308 (2006)

    Article  ADS  Google Scholar 

  20. Bergou J.A., Buzek V., Feldman E., Herzog U., Hillery M.: Programmable quantum-state discriminators with simple programs. Phys. Rev. A 73, 062334 (2006)

    Article  ADS  Google Scholar 

  21. Berger J.O.: Statistical decision theory and Bayesian analysis. Springer, Berlin (1985)

    MATH  Google Scholar 

  22. Helstrom C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    Google Scholar 

  23. Ivanovic I.D.: How to differentiate between non-orthogonal states. Phys. Lett. A 123, 257–259 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  24. Dieks D.: Overlap and distinguishability of quantum states. Phys. Lett. A 126, 303–306 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  25. Peres A.: How to differentiate between non-orthogonal states. Phys. Lett. A 128, 19–19 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  26. Bergou, J.A., Herzog, U., Hillery, M.: Discrimination of quantum states. In: Quantum State Estimation, ser. Lecture Notes in Physics, vol. 649, Springer, Berlin, Heidelberg (2004)

  27. Zhang M., Zhou Z.T., Dai H.Y., Hu D.: On impact of a priori classical knowledge of discriminated states on the optimal unambiguous discrimination. Quantum Inf. Comput. 8(10), 0951–0964 (2008)

    MathSciNet  Google Scholar 

  28. D’Ariano G.M., Sacchi M.F., Kahn J.: Minimax quantum-state discrimination. Phys. Rev. A 72, 032310 (2005)

    Article  ADS  Google Scholar 

  29. Jaeger G., Shimony A.: Optimal distinction between two non-orthogonal quantum states. Phys. Lett. A 197, 83–87 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, M., Lin, M., Schirmer, S.G. et al. On the role of a priori knowledge in the optimization of quantum information processing. Quantum Inf Process 11, 639–673 (2012). https://doi.org/10.1007/s11128-011-0278-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0278-2

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy