Skip to main content

Advertisement

Log in

Experimental implementation of a NMR entanglement witness

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Entanglement witnesses (EW) allow the detection of entanglement in a quantum system, from the measurement of some few observables. They do not require the complete determination of the quantum state, which is regarded as a main advantage. On this paper it is experimentally analyzed an entanglement witness recently proposed in the context of Nuclear Magnetic Resonance experiments to test it in some Bell-diagonal states. We also propose some optimal entanglement witness for Bell-diagonal states. The efficiency of the two types of EW’s are compared to a measure of entanglement with tomographic cost, the generalized robustness of entanglement. It is used a GRAPE algorithm to produce an entangled state which is out of the detection region of the EW for Bell-diagonal states. Upon relaxation, the results show that there is a region in which both EW fails, whereas the generalized robustness still shows entanglement, but with the entanglement witness proposed here with a better performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Nielsen M.A., Chuang I.L.: Quantum Information and Quantum Computation. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  2. Lewenstein M., Krauss B., Cirac J.I., Horodecki P.: Optimization of entanglement witnesses. Phys. Rev. A 62, 052310 (2000)

    Article  ADS  Google Scholar 

  3. Lima G., Lima E.S., Vargas A., Vianna R.O., Saavedra C.: Fast entanglement detection for unknown states of two spatial qutrits. Phys. Rev. A 82, 012302 (2010)

    Article  ADS  Google Scholar 

  4. Wiesniak M.M., Vedral V., Brukner C.: Magnetic susceptibility as a macroscopic entanglement witness. New J. Phys. 7, 258 (2005)

    Article  ADS  Google Scholar 

  5. Rappoport T.G., Ghivelder L., Fernandes J.C., Guimarães R.B., Continentino M.A.: Experimental observation of quantum entanglement in low-dimensional spin systems. Phys. Rev. B 75, 054422 (2007)

    Article  ADS  Google Scholar 

  6. Souza A.M., Reis M.S., Soares-Pinto D.O., Sarthour R.S., Oliveira I.S.: Experimental determination of thermal entanglement in spin clusters using magnetic susceptibility measurements. Phys. Rev. B 77, 104402 (2008)

    Article  ADS  Google Scholar 

  7. Oliveira I.S., Bonagamba T.J., Sarthour R.S., Freitas J.C.C., Azevedo E.R. et al.: NMR Quantum Information Processing. Elsevier, Amsterdam (2007)

    Google Scholar 

  8. Nielsen M.A., Knill E., Laflamme R.: Complete quantum teleportation using nuclear magnetic resonance. Nature 396, 52 (1998)

    Article  ADS  Google Scholar 

  9. Vandersypen L.M.K., Steffen M., Breyta G., Yannoni C.S., Sherwood M.H., Chuang I.L.: Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414, 883 (2001)

    Article  ADS  Google Scholar 

  10. Rahimi R., Takeda K., Ozawa M., Kitagawa M.: Entanglement witness derived from NMR superdense coding. J. Phy. A Math. Gen. 39, 2151 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  11. Fang X.M., Zhu X., Feng M., Mao X., Du F.: Experimental implementation of dense coding using nuclear magnetic resonance. Phys. Rev. A 61, 022307 (2000)

    Article  ADS  Google Scholar 

  12. Brandão F.G.S.L., Vianna R.O.: Separable multipartite mixed states: operational asymptotically necessary and sufficient conditions. Phys. Rev. Lett. 93, 220503 (2004)

    Article  ADS  Google Scholar 

  13. Brandão F.G.S.L.: Quantifying entanglement with witness operators. Phys. Rev. A 72, 022310 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  14. Leskowitz G.M., Mueller L.: State interrogation in nuclear magnetic resonance quantum-information processing. Phys. Rev. A 69, 052302 (2004)

    Article  ADS  Google Scholar 

  15. Steiner M.: Generalized robustness of entanglement. Phys. Rev. A 67, 054305 (2003)

    Article  ADS  Google Scholar 

  16. Cavalcanti D.: Connecting the generalized robustness and the geometric measure of entanglement. Phys. Rev. A 73, 044302 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  17. Brandão F.G.S.L.: Entanglement activation and the robustness of quantum correlations. Phys. Rev. A 76, 030301(R) (2007)

    Article  ADS  Google Scholar 

  18. Kawamura M., Rowland B., Jones J.A.: Preparing pseudopure states with controlled-transfer gates. Phys. Rev. A 82, 032315 (2010)

    Article  ADS  Google Scholar 

  19. Khaneja N., Reiss T., Kehlet C., Schulte-Herbrüggen T., Glaser S.J.: Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. J. Magn. Reson. 172, 296 (2005)

    Article  ADS  Google Scholar 

  20. Maciel, T., Cesario, A.T., Vianna, R.O.: Variational quantum tomography with incomplete information by means of semidefinite programs, arXiv:1001.1793v5 [quant-ph] (to appear in Int. J. Modern Phys. C)

  21. Lang M.D., Laves C.M.: Quantum discord and the geometry of bell-diagonal states. Phys. Rev. Lett. 105, 150501 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. G. Filgueiras.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Filgueiras, J.G., Maciel, T.O., Auccaise, R.E. et al. Experimental implementation of a NMR entanglement witness. Quantum Inf Process 11, 1883–1893 (2012). https://doi.org/10.1007/s11128-011-0341-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0341-z

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy