Abstract
We analyze the efficacy of an output as a resource from a universal quantum cloning machine in information processing tasks such as teleportation and dense coding. For this, we have considered the \(3 \otimes 3\) dimensional systems. The output states are found to be NPT states for a certain range of machine parameters. Using the output state as an entangled resource, we also study the optimal fidelities of teleportation and capacities of dense coding protocols with respect to the machine parameters and make some interesting observations. Our work is motivated from the fact that the cloning output can be used as a resource in quantum information processing and adds a valuable dimension to the applications of cloning machines.



Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)
Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)
Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656 (1996)
Bennett, C.H., Brassard, G.: In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing. Bangalore, India. IEEE, New York, p. 175 (1984)
Ekert, Artur K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)
Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)
Linden, N., Popescu, S.: Bound entanglement and teleportation. Phys. Rev. A 59, 137 (1999)
Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 60, 1888–1898 (1999)
Liu, X.S., Long, G.L., Tong, D.M., Li, F.: General scheme for super dense coding between multi-parties. Phys. Rev. A 65, 022304 (2002)
Bruß, D., et al.: Tomographic quantum cryptography: equivalence of quantum and classical key distillation. Phys. Rev. Lett. 91, 097901 (2003)
Acín, A., Gisin, N.: Quantum correlations and secret bits. Phys. Rev. Lett. 94, 020501 (2005)
Cerf, N.J., et al.: Cloning a qutrit. J. Modern Opt. 49(8), 1355–1373 (2002)
Wiseman, S., Domany, E.: Finite-size scaling and lack of self-averaging in critical disordered systems. Phys. Rev. Lett. 81, 22 (1998)
Buzek, V., Hillery, M.: Universal optimal cloning of arbitrary quantum states: from qubits to quantum registers. Phys. Rev. Lett. 81(22), 5003 (1998)
Adhikari, S., Ganguly, N., Chakrabarty, I., Choudhury, B.S.: Quantum cloning, Bell’s inequality and teleportation. J. Phys. A Math. Theor. 41, 415302 (2008)
Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413–1415 (1996)
Horodecki, M., Horodecki, P.: Reduction criterion of separability and limits for a class of distillation protocols. Phys. Rev. A 59, 4206–4216 (1999)
Karimipour, V., Memarzadeh, L.: Equientangled bases in arbitrary dimensions. Phys. Rev. A 73, 012329 (2006)
Verstraete, F., Verschelde, H.: Optimal teleportation with a mixed state of two qubits. Phys. Rev. Lett. 90, 097901–097904 (2003)
Horodecki, M., Horodecki, P.: Reduction criterion of separability and limits for a class of distillation protocols. Phys. Rev. A 59, 4206 (1999)
Ganguly, N., Adhikari, S., Majumdar, A.S., Chatterjee, J.: Entanglement witness operator for quantum teleportation. Phys. Rev. Lett. 107, 270501 (2011)
Kumar, A., Adhikari, S., Agrawal, P.: Generalized form of optimal teleportation witnesses. Quantum Inf. Proc. doi:10.1007/s11128-013-0539-3
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Roy, S., Ganguly, N., Kumar, A. et al. A cloned qutrit and its utility in information processing tasks. Quantum Inf Process 13, 629–638 (2014). https://doi.org/10.1007/s11128-013-0678-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-013-0678-6