Skip to main content

Advertisement

Log in

A cloned qutrit and its utility in information processing tasks

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We analyze the efficacy of an output as a resource from a universal quantum cloning machine in information processing tasks such as teleportation and dense coding. For this, we have considered the \(3 \otimes 3\) dimensional systems. The output states are found to be NPT states for a certain range of machine parameters. Using the output state as an entangled resource, we also study the optimal fidelities of teleportation and capacities of dense coding protocols with respect to the machine parameters and make some interesting observations. Our work is motivated from the fact that the cloning output can be used as a resource in quantum information processing and adds a valuable dimension to the applications of cloning machines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. Bennett, C.H., Wiesner, S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76, 4656 (1996)

    Google Scholar 

  4. Bennett, C.H., Brassard, G.: In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing. Bangalore, India. IEEE, New York, p. 175 (1984)

  5. Ekert, Artur K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  ADS  Google Scholar 

  7. Linden, N., Popescu, S.: Bound entanglement and teleportation. Phys. Rev. A 59, 137 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  8. Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and quasidistillation. Phys. Rev. A 60, 1888–1898 (1999)

    Google Scholar 

  9. Liu, X.S., Long, G.L., Tong, D.M., Li, F.: General scheme for super dense coding between multi-parties. Phys. Rev. A 65, 022304 (2002)

    Article  ADS  Google Scholar 

  10. Bruß, D., et al.: Tomographic quantum cryptography: equivalence of quantum and classical key distillation. Phys. Rev. Lett. 91, 097901 (2003)

    Article  ADS  Google Scholar 

  11. Acín, A., Gisin, N.: Quantum correlations and secret bits. Phys. Rev. Lett. 94, 020501 (2005)

    Google Scholar 

  12. Cerf, N.J., et al.: Cloning a qutrit. J. Modern Opt. 49(8), 1355–1373 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Wiseman, S., Domany, E.: Finite-size scaling and lack of self-averaging in critical disordered systems. Phys. Rev. Lett. 81, 22 (1998)

    Article  ADS  Google Scholar 

  14. Buzek, V., Hillery, M.: Universal optimal cloning of arbitrary quantum states: from qubits to quantum registers. Phys. Rev. Lett. 81(22), 5003 (1998)

    Article  ADS  Google Scholar 

  15. Adhikari, S., Ganguly, N., Chakrabarty, I., Choudhury, B.S.: Quantum cloning, Bell’s inequality and teleportation. J. Phys. A Math. Theor. 41, 415302 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413–1415 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Horodecki, M., Horodecki, P.: Reduction criterion of separability and limits for a class of distillation protocols. Phys. Rev. A 59, 4206–4216 (1999)

    Google Scholar 

  18. Karimipour, V., Memarzadeh, L.: Equientangled bases in arbitrary dimensions. Phys. Rev. A 73, 012329 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  19. Verstraete, F., Verschelde, H.: Optimal teleportation with a mixed state of two qubits. Phys. Rev. Lett. 90, 097901–097904 (2003)

    Article  ADS  Google Scholar 

  20. Horodecki, M., Horodecki, P.: Reduction criterion of separability and limits for a class of distillation protocols. Phys. Rev. A 59, 4206 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  21. Ganguly, N., Adhikari, S., Majumdar, A.S., Chatterjee, J.: Entanglement witness operator for quantum teleportation. Phys. Rev. Lett. 107, 270501 (2011)

    Article  Google Scholar 

  22. Kumar, A., Adhikari, S., Agrawal, P.: Generalized form of optimal teleportation witnesses. Quantum Inf. Proc. doi:10.1007/s11128-013-0539-3

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atul Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, S., Ganguly, N., Kumar, A. et al. A cloned qutrit and its utility in information processing tasks. Quantum Inf Process 13, 629–638 (2014). https://doi.org/10.1007/s11128-013-0678-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0678-6

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy