Abstract
We study two-level q-deformed angular momentum states, and using q-deformed harmonic oscillators, we provide a framework for constructing qubits and quantum gates. We also present the construction of some basic one-qubit and two-qubit quantum logic gates.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Drinfeld, V.G.: Quantum groups. In: Proceedings of International Congress of Mathematicians, Berkeley, California, USA. Academic Press, p. 798 (1986)
Woronowicz, S.L.: Compact Matrix Preudogroups. Commun. Math. Phys. 111, 613 (1987)
Manin, Y.I.: Quantum Groups and Non-commutative Geometry. Centre De Recherches Math, Montreal (1988)
Arik, M., Baykal, A.: Inhomogeneous quantum groups for particle algebras. J. Math. Phys. 45, 4207 (2004)
Altintas, A.A., Arik, M., Atakishiyev, N.M.: On unitary transformations of orthofermion algebra that form a quantum group. Mod. Phys. Lett. A 21, 1463 (2006)
Altintas, A.A., Arik, M.: Quantum groups of fermionic algebras cent. Eur. J. Phys. 5, 70 (2007)
Altintas, A.A., Arik, M.: Inhomogeneous quantum group generalization of IO(2n, C) and ISp(2n, C): Mod. Phys. Lett. A 23, 617 (2008)
Altintas, A.A., Arik, M.: The inhomogeneous invariance quantum supergroup of supersymmetry algebra. Phys. Lett. A. 372, 5955 (2008)
Altintas, A.A., Arik, M., Arikan, A.S.: The inhomogeneous quantum invariance group of the multi-dimensional q-deformed boson algebra. Cent. Eur. J. Phys. 8, 131 (2010)
Alim, H., Altintas, A.A., Arik, M., Arikan, A.S.: The inhomogeneous quantum invariance group of the two parameter deformed boson algebra. Int. J. Theor. Phys. 49, 633 (2010)
Altintas, A.A., Arik, M., Arikan, A.S.: The inhomogeneous invariance quantum group of q-deformed boson algebra with continuous parameters. J. Nonlinear Math. Phys. 18, 121 (2011)
Altintas, A.A., Arik, M., Arikan, A.S., Dil, E.: Inhomogeneous quantum invariance group of multi-dimensional multi-parameter deformed boson algebra. Chin. Phys. Lett. 29, 010203 (2012)
Altintas, A.A.: Bosonic algebras and their inhomogeneous invariance quantum groups. J. Phys. Conf. Ser. 343, 012010 (2012)
Arik, M., Coon, D.D.: Hilbert spaces of analytic functions and generalized coherent states. J. Math. Phys. 17, 524 (1976)
Arik, M., Coon, D.D., Lam, Y.M.: Operator algebra of dual resonance model. J. Math. Phys. 9, 1776 (1975)
Macfarlane, A.J.: On q-analogues of the quantum harmonic oscillator and the quantum group \(SU(2)_q\). J. Phys. A 22, 4581 (1989)
Biedenharn, L.C.: The quantum group \(SU_q(2)\) and a q-analogue of the boson operators. J. Phys. A 22, L873 (1989)
Bonatsos, D., Daskoloyamis, C.: Generalized deformed oscillators for vibrational spectra of diatomic molecules. Phys. Rev A 46, 75 (1992)
Bonatsos, D., Lewis, D., Raychev, P.P., Terziev, P.A.: Deformed harmonic oscillators for metal clusters: analytic properties and supershells. Phys. Rev. A 65, 033203 (2002)
Georgieva, A.I., Sviratcheva, K.D., Ivanov, M.I., Draayer, J.P.: q-Deformation of symplectic dynamical systems in algebraic models of nuclear structure. Phys. Atom. Nucl. 74, 884 (2011)
Berrada, K., El Baz, M., Eleuch, H., Hassouni, Y.: Bipartite entanglement of nonlinear quantum systems in the context of the q-Heisenberg Weyl algebra. Quantum Inf. Proc. 11, 351 (2012)
Berrada, K., Hassouni, Y.: Maximal entanglement of bipartite spin states in the context of quantum algebra. EPJD 61, 513 (2011)
Liu, Y.X., Sun, C.P., Yu, S.X., Zhou, D.L.: Semiconductor-cavity QED in high-Q regimes with q-deformed bosons. PRA 63, 023802 (2001)
Sharma, S.S.: Quantum logic gates with ion trap in an optical cavity. IJPMA 18, 2221 (2003)
Hasegawa, H.: Quantum Fisher information and q-deformed relative entropies. PTP 162, 183 (2006)
Schwinger, J., Englert, B.-G.: Quantum Mechanics: Symbolism of Atomic Measurements. Springer, Berlin (2001)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Information. Cambridge University Press, Cambridge (2000)
Gagopadhyay, D.: The CNOT quantum logic gate uing q-deformed oscillators. Int. J. Quantum Inf. 06, 471 (2008)
Fredkin, E., Toffoli, T.: Conservative logic. Int. J. Theor. Phys. 21, 219 (1982)
Bugu, S., Yesilyurt, C., Ozaydin, F.: Enhancing the W-state quantum-network-fusion process with a single Fredkin gate. Phys. Rev. A 87, 032331 (2013)
Yesilyurt, C., Bugu, S., Ozaydin, F.: An optical gate for simultaneous fusion of four photonic W or Bell states. Quantum Inf. Proc. 12, 2965 (2013)
Biedenharn, L.C., Lohe, M.A.: Quantum Group Symmetry and q Tensor Algebras. World Scientific, Singapore (1995)
Filippov, A.T., Gagopadhyay, D., Isaev, A.P.: Harmonic oscillator realization of the canonical q-transformation. J. Phys. A 24, L63 (1991)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Altintas, A.A., Ozaydin, F., Yesilyurt, C. et al. Constructing quantum logic gates using q-deformed harmonic oscillator algebras. Quantum Inf Process 13, 1035–1044 (2014). https://doi.org/10.1007/s11128-013-0709-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11128-013-0709-3