Abstract
This article points out a security loophole in Shi et al.’s quantum blind signature scheme. By using the modification attack, a message owner can cheat a signature receiver with a fake message–signature pair without being detected.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Zeng, G., Ma, W., Wang, X., Zhu, H.-W.: Signature scheme based on quantum cryptography. Acta Electron. Sin. 29(8), 1098–1100 (2001)
Wang, J.-H., Liu, J.-W., Li, X.-H., Kou, W.-D.: Fair e-payment protocol based on blind signature. J. China Univ. Posts Telecommun. 16(5), 114–118 (2009)
Ibrahim, S., Kamat, M., Salleh, M., Aziz, S.R.A.: Secure E-voting with blind signature. In Telecommunication Technology, 2003. NCTT 2003 Proceedings. 4th National Conference on. IEEE (2003)
Wen, X., Niu, X., Ji, L., Tian, Y.: A weak blind signature scheme based on quantum cryptography. Opt. Commun. 282(4), 666–669 (2009)
Wang, T.Y., Wen, Q.Y.: Fair quantum blind signatures. Chin. Phys. B 19(6), 060307 (2010)
He, L.B., Huang, L.S., Yang, W., Xu, R.: Cryptanalysis of fair quantum blind signatures. Chin. Phys. B 21(3), 030306 (2012)
Zou, X.F., Qiu, D.W.: Attack and improvements of fair quantum blind signature schemes. Quantum Inf. Process. 12(6), 2071–2085 (2013)
Yin, X.-R., Ma, W.-P., Liu, W.-Y.: A blind quantum signature scheme with \(\chi \)-type entangled states. Int. J. Theor. Phys. 51(2), 455–461 (2012)
Wang, M., Chen, X., Yang, Y.: A blind quantum signature protocol using the GHZ states. Sci. China Phys. Mech. Astron. 56(9), 1636–1641 (2013)
Su, Q., Huang, Z., Wen, Q.Y., Li, W.M.: Quantum blind signature based on two-state vector formalism. Opt. Commun. 283(21), 4408–4410 (2010)
Su, Q., Li, W.M.: Cryptanalysis of enhancement on “quantum blind signature based on two-state vector formalism”. Quantum Inf. Process. 13(5), 1245–1254 (2014)
Shi, W.-M., Zhang, J.-B., Zhou, Y.-H., Yang, Y.-H.: A new quantum blind signature with unlinkability. Quantum Inf. Process. 14(8), 3019–3030 (2015)
Boykin, P.O., Roychowdhury, V.: Optimal encryption of quantum bits. Phys. Rev. A 67(4), 042317 (2003)
Zhou, N.R., Liu, Y., Zeng, G.H., Xiong, J., Zhu, F.C.: Novel qubit block encryption algorithm with hybrid keys. Phys. A Stat. Mech. Appl. 375(2), 693–698 (2007)
Rogaway, P., Shrimpton. T.: Cryptographic hash-function basics: definitions, implications, and separations for preimage resistance, second-preimage resistance, and collision resistance. In International Workshop on Fast Software Encryption. Springer (2004)
Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014)
Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)
Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001)
Acknowledgements
We would like to thank the Ministry of Science and Technology of Republic of China for financial support of this research under Contract No. MOST 104-2221-E-006-102.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Luo, YP., Tsai, SL., Hwang, T. et al. On “A new quantum blind signature with unlinkability”. Quantum Inf Process 16, 87 (2017). https://doi.org/10.1007/s11128-017-1536-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-017-1536-8