Abstract
Some methods have been proposed to construct quantum codes out of classical codes. There is a relationship between quantum codes and codes on the quaternary field. The structure of CSS codes has been raised to construct quantum codes. Most of them are based on the fact that a classical code is self-orthogonal. In this paper, a quantum code is constructed using a suitable permutation-based technique on the parity check matrix of classical codes. Several examples of the new quantum error correcting codes are provided. Single parity check (SPC) product codes have simple decoding algorithms, as well as good decoding efficiency. With this technique, the SPC product codes are used to construct quantum codes.

Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44, 1369–1387 (1998)
Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996)
Steane, A.M.: Multiple particle interference and quantum error correction. Proc. R. Soc. Lond. A 452, 2551–2577 (1996)
MacKay, D.J.C., Mitchison, G., McFadden, P.L.: Sparse-graph codes for quantum error correcting. IEEE Trans. Inf. Theory 50, 2315–2330 (2004)
Djordjevic, I.B.: Quantum LDPC codes from balanced incomplete block designs. IEEE Commun. Lett. 12, 389–391 (2008)
Aly S.A.: A Class of quantum LDPC codes constructed from finite geometries. In: IEEE GLOBECOM, pp. 1–5 (2008)
Couvreur, A., Delfosse, N., Zmor, G.: A construction of quantum LDPC codes from Cayley graphs. IEEE Trans. Inf. Theory 59, 6087–6098 (2013)
Munuera, C., Tenorio, W., Torres, F.: Quantum error-correcting codes from algebraic geometry codes of Castle type. Quantum Inf. Process. 15(10), 4071–4088 (2016)
Tang, Y., Zhu, S., Kai, X., Ding, J.: New quantum codes from dual-containing cyclic codes over finite rings. Quantum Inf. Process. 15, 4489–4500 (2016)
Aly, S.A., Klappenecker, A., Sarvepalli, P.K.: On quantum and classical BCH codes. IEEE Trans. Inf. Theory 53(3), 1183–1188 (2007)
La Guardia, G.G.: On the construction of nonbinary quantum BCH codes. IEEE Trans. Inf. Theory 60, 1528–1535 (2014)
La Guardia, G.G., Palazzo, R.: Constructions of new families of nonbinary CSS code. Discrete Math. 310(21), 2935–2945 (2010)
Hamada, M.: Concatenated quantum codes constructible in polynomial time: efficient decoding and error correction. IEEE Trans. Inf. Theory 54(12), 5689–5704 (2008)
Hagiwara, M., Imai, H.: Quantum quasi-cyclic LDPC codes. In: Proceedings of IEEE International Symposium on Information Theory, ISIT (2007)
Dennis, E., Kitaev, A., Landahl, A., Preskill, J.: Topological quantum memory. J. Math. Phys. 43, 4452–4505 (2002)
Kitaev, A.Y.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2–30 (2003)
Bombin, H., Martin-Delgado, M.A.: Homological error correction: classical and quantum codes. J. Math. Phys. 48, 052105 (2007)
Elias, P.: Error-free coding. IRE Trans. Inf. Theory 4, 29–37 (1954)
Grassl, M., Rotteler, M.: Quantum block and convolutional codes from self-orthogonal product codes. In: Proceedings of International Symposium on Information Theory (ISIT) (2005)
Fan, J., Li, Y., Hsieh, M.H., Chen, H.: On quantum tensor product codes. Quantum Inf. Comput. 17, 1105–1122 (2017)
Guardia, G.G.: Asymmetric quantum product codes. Int. J. Quantum Inf. 10, 1250005 (2012)
Caire, G., Taricco, G., Battail, G.: Weight distribution and performance of the iterated product of single-parity-check codes. In: IEEE GLOBECOM, pp. 206–211 (1994)
Biglieri, E., Volski, V.: Approximately Gaussian weight distribution of the iterated product of single-parity-check codes. Electron. Lett. 30(12), 923–924 (1994)
Ping, L., Chan, S., Yeung, K.: Efficient soft-in-soft-out sub-optimal decoding rule for single parity check codes. Electron. Lett. 33(19), 1614–1616 (1997)
Ping, L., Chan, S., Yeung, K.L.: Iterative decoding of multi-dimensional concatenated single parity check codes. In: IEEE International Conference on Communications, pp. 131–135 (1998)
Huang, X., Phamdo, N., Ping, L.: BER bounds on parallel concatenated single parity check arrays and zigzag codes. In: Conference GLOBECOM, pp. 2436–2440 (1999)
Rankin, D.M., Gulliver, T.A.: Single parity check product codes. IEEE Trans. Commun. 49(8), 1354–1362 (2001)
Kousa, M.A.: A novel approach for evaluating the performance of SPC product codes under erasure decoding. IEEE Trans. Commun. 50(1), 7–11 (2002)
Amutha, R., Verraraghavan, K., Srivatsa, S.K.: Recoverability study of SPC product codes under erasure decoding. Inf. Sci. 173, 169–179 (2005)
Coskun, M.C., Liva, G., Graell, A., Amat, I., Lentmaier, M.: Successive cancellation decoding of single parity-check product codes. In: IEEE International Symposium on Information Theory (ISIT) (2017)
Gottesman, D.: Stabilizer codes and quantum error correction, Ph.D. thesis, Caltech (1997)
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 54, R2493 (1995)
Tonchev, V.D.: Error-correcting codes from graphs. Discrete Math. 257, 549–557 (2002)
Roth, R.M.: Introduction to Coding Theory. Cambridge University Press, Cambridge (2006)
Hivadi, M., Esmaeili, M.: On the stopping distance and stopping redundancy of product codes. IEICE Trans. E91–A, 2167–2173 (2008)
Acknowledgements
I am indebted to the anonymous referees for their comments and suggestions that have improved the quality of this paper.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hivadi, M. On quantum SPC product codes. Quantum Inf Process 17, 324 (2018). https://doi.org/10.1007/s11128-018-2095-3
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-018-2095-3