Abstract
We investigate the polygamy relations of multipartite quantum states. General polygamy inequalities are given in the \(\alpha \)th \((\alpha \ge 2)\) power of concurrence of assistance, \(\beta \)th \((\beta \ge 1)\) power of entanglement of assistance, and the squared convex-roof extended negativity of assistance (SCRENoA).



Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)
Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)
Mintert, F., Kuś, M., Buchleitner, A.: Concurrence of mixed bipartite quantum states in arbitrary dimensions. Phys. Rev. Lett. 92, 167902 (2004)
Chen, K., Albeverio, S., Fei, S.M.: Concurrence of arbitrary dimensional bipartite quantum states. Phys. Rev. Lett. 95, 040504 (2005)
Breuer, H.P.: Separability criteria and bounds for entanglement measures. J. Phys. A Math. Gen. 39, 11847 (2006)
Breuer, H.P.: Optimal entanglement criterion for mixed quantum states. Phys. Rev. Lett. 97, 080501 (2006)
de Vicente, J.I.: Lower bounds on concurrence and separability conditions. Phys. Rev. A 75, 052320 (2007)
Zhang, C.J., Zhang, Y.S., Zhang, S., Guo, G.C.: Optimal entanglement witnesses based on local orthogonal observables. Phys. Rev. A 76, 012334 (2007)
Pawlowski, M.: Security proof for cryptographic protocols based only on the monogamy of bells inequality violations. Phys. Rev. A 82, 032313 (2010)
Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)
Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)
Gour, G., Meyer, D.A., Sanders, B.C.: Deterministic entanglement of assistance and monogamy constraints. Phys. Rev. A 72, 042329 (2005)
Kim, J.S.: Tsallis entropy and entanglement constraints in multiqubit systems. Phys. Rev. A 81, 062328 (2010)
Kim, J.S., Sanders, B.C.: Unified entropy, entanglement measures and monogamy of multiparty entanglement. J. Phys. A Math. Theor. 44, 295303 (2011)
Goura, G., Bandyopadhyayb, S., Sandersc, B.C.: Dual monogamy inequality for entanglement. J. Math. Phys. 48, 012108 (2007)
Buscemi, F., Gour, G., Kim, J.S.: Polygamy of distributed entanglement. Phys. Rev. A 80, 012324 (2009)
Kim, J.S.: General polygamy inequality of multiparty quantum entanglement. Phys. Rev. A 85, 062302 (2012)
Kim, J.S.: Tsallis entropy and general polygamy of multiparty quantum entanglement in arbitrary dimensions. Phys. Rev. A 94, 062338 (2016)
Jin, Z.X., Fei, S.M.: Tighter entanglement monogamy relations of qubit systems. Quantum Inf. Process. 16, 77 (2017)
Jin, Z.X., Li, J., Li, T., Fei, S.M.: Tighter monogamy relations in multiqubit systems. Phys. Rev. A 97, 032336 (2018)
Zhu, X.N., Fei, S.M.: Entanglement monogamy relations of qubit systems. Phys. Rev. A 90, 024304 (2014)
Kalaga, J.K., Leoński, W.: Quantum steering borders in three-qubit systems. Quantum Inf. Process. 16, 175 (2017)
Kalaga, J.K., Leoński, W.: Quantum steering and entanglement in three-mode triangle Bose–Hubbard system. Quantum Inf. Process. 16, 265 (2017)
Olsen, M.K.: Spreading of entanglement and steering along small Bose–Hubbard chains. Phys. Rev. A 92, 033627 (2015)
Deng, X., Xiang, Y., Tian, C., Adesso, G., He, Q.: Demonstration of monogamy relations for Einstein–Podolsky–Rosen steering in Gaussian cluster states. Phys. Rev. Lett. 118, 230501 (2017)
Kalaga, J.K., Leoński, W.: Einstein–Podolsky–Rosen steering and coherence in the family of entangled three-qubit states. Phys. Rev. A 97, 042110 (2018)
Kim, J.S.: Negativity and tight constraints of multiqubit entanglement. Phys. Rev. A 97, 012334 (2018)
Kim, J.S.: Weighted polygamy inequalities of multiparty entanglement in arbitrary-dimensional quantum systems. Phys. Rev. A 97, 042332 (2018)
Guo, Y.: Any entanglement of assistance is polygamous. Quantum Inf. Process. 17, 222 (2018)
Uhlmann, A.: Fidelity and concurrence of conjugated states. Phys. Rev. A 62, 032307 (2000)
Rungta, P., Buz̆ek, V., Caves, C.M., Hillery, M., Milburn, G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315 (2001)
Albeverio, S., Fei, S.M.: A note on invariants and entanglements. J. Opt. B Quantum Semiclass. Opt. 3, 223 (2001)
Laustsen, T., Verstraete, F., Van Enk, S.J.: Local vs. joint measurements for the entanglement of assistance. Quantum Inf. Comput. 3, 64 (2003)
Yu, C.S., Song, H.S.: Entanglement monogamy of tripartite quantum states. Phys. Rev. A 77, 032329 (2008)
Osborne, T.J., Verstraete, F.: General monogamy inequality for bipartite qubit entanglement. Phys. Rev. Lett. 96, 220503 (2006)
Bai, Y.K., Ye, M.Y., Wang, Z.D.: Entanglement monogamy and entanglement evolution in multipartite systems. Phys. Rev. A 80, 044301 (2009)
Akhtarshenas, S.J.: Concurrence vectors in arbitrary multipartite quantum systems. J. Phys. A 38, 6777 (2005)
Kim, J.S.: Polygamy of entanglement in multipartite quantum systems. Phys. Rev. A 80, 022302 (2009)
Groblacher, S., Jennewein, T., Vaziri, A., Weihs, G., Zeilinger, A.: Experimental quantum cryptography with qutrits. New J. Phys. 8, 75 (2006)
Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A. 65, 032314 (2002)
Acknowledgements
This work was supported in part by the National Natural Science Foundation of China(NSFC) under Grants 11847209; 11675113 and 11635009; Key Project of Beijing Municipal Commission of Education under No. KZ201810028042; the Ministry of Science and Technology of the Peoples’ Republic of China (2015CB856703); and the Strategic Priority Research Program of the Chinese Academy of Sciences, Grant No. XDB23030100.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Jin, ZX., Fei, SM. & Qiao, CF. Polygamy relations of multipartite systems. Quantum Inf Process 18, 105 (2019). https://doi.org/10.1007/s11128-019-2220-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-019-2220-y