Skip to main content

Advertisement

Log in

Optimal uniform continuity bound for conditional entropy of classical–quantum states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this short note, I show how a recent result of Alhejji and Smith (A tight uniform continuity bound for equivocation, 2019. arXiv:1909.00787v1) regarding an optimal uniform continuity bound for classical conditional entropy leads to an optimal uniform continuity bound for quantum conditional entropy of classical–quantum states. The bound is optimal in the sense that there always exists a pair of classical–quantum states saturating the bound, and so, no further improvements are possible. An immediate application is a uniform continuity bound for the entanglement of formation that improves upon the one previously given by Winter (Commun Math Phys 347(1):291–313, 2016. arXiv:1507.07775). Two intriguing open questions are raised regarding other possible uniform continuity bounds for conditional entropy: one about quantum–classical states and another about fully quantum bipartite states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Alhejji M.A., Smith, G.: A tight uniform continuity bound for equivocation (2019). arXiv:1909.00787v1

  2. Zhang, Zhengmin: Estimating mutual information via Kolmogorov distance. IEEE Trans. Inf. Theory 53(9), 3280–3282 (2007)

    Article  MathSciNet  Google Scholar 

  3. Audenaert, K.M.R.: A sharp continuity estimate for the von Neumann entropy. J. Phys. A Math. Theor. 40(28), 8127 (2007). arXiv:quant-ph/0610146

    Article  ADS  MathSciNet  Google Scholar 

  4. Leung, Debbie, Smith, Graeme: Continuity of quantum channel capacities. Commun. Math. Phys. 292(1), 201–215 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  5. Sutter, David, Scholz, Volkher B., Winter, Andreas, Renner, Renato: Approximate degradable quantum channels. IEEE Trans. Inf. Theory 63(12), 7832–7844 (2017). arXiv:1412.0980

    Article  MathSciNet  Google Scholar 

  6. Leditzky, F., Leung, D., Smith, G.: Quantum and private capacities of low-noise channels. Phys. Rev. Lett. 120(16), 160503 (2018). arXiv:1705.04335

    Article  ADS  Google Scholar 

  7. Leditzky, F., Kaur, E., Datta, N., Wilde, M.M.: Approaches for approximate additivity of the Holevo information of quantum channels. Phys. Rev. A 97(1), 012332 (2018). arXiv:1709.01111

    Article  ADS  Google Scholar 

  8. Kaur, E., Wilde, M.M.: Amortized entanglement of a quantum channel and approximately teleportation-simulable channels. J. Phys. A Math. Theor. (2017). arXiv:1707.07721

  9. Sharma, K., Wilde, M.M., Adhikari, S., Takeoka, M.: Bounding the energy-constrained quantum and private capacities of bosonic thermal channels. New J. Phys. 20, 063025 (2018). arXiv:1708.07257

    Article  ADS  Google Scholar 

  10. Khatri, S., Sharma, K., Wilde, M.M.: Information-theoretic aspects of the generalized amplitude damping channel (2019). arXiv:1903.07747

  11. Kaur, E., Guha, S., Wilde, M.M.: Asymptotic security of discrete-modulation protocols for continuous-variable quantum key distribution (2019). arXiv:1901.10099

  12. Fannes, Mark: A continuity property of the entropy density for spin lattices. Commun. Math. Phys. 31, 291 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  13. Alicki, Robert, Fannes, Mark: Continuity of quantum conditional information. J. Phys. A Math. Gen. 37(5), L55–L57 (2004). arXiv:quant-ph/0312081

    Article  ADS  MathSciNet  Google Scholar 

  14. Winter, A.: Tight uniform continuity bounds for quantum entropies: conditional entropy, relative entropy distance and energy constraints. Commun. Math. Phys. 347(1), 291–313 (2016). arXiv:1507.07775

    Article  ADS  MathSciNet  Google Scholar 

  15. Shirokov, Maksim E.: Tight uniform continuity bounds for the quantum conditional mutual information, for the Holevo quantity, and for capacities of quantum channels. J. Math. Phys. 58(10), 102202 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  16. Shirokov, M.E.: Adaptation of the Alicki–Fannes–Winter method for the set of states with bounded energy and its use. Rep. Math. Phys. 81(1), 81–104 (2018). arXiv:1609.07044

    Article  MathSciNet  Google Scholar 

  17. Shirokov, M.E.: Uniform continuity bounds for information characteristics of quantum channels depending on input dimension and on input energy. J. Phys. A Math. Theor. 52(1), 014001 (2018). arXiv:1610.08870

    Article  ADS  MathSciNet  Google Scholar 

  18. Shirokov, M.E.: Advanced Alicki–Fannes–Winter method for energy-constrained quantum systems and its use (2019). arXiv:1907.02458

  19. Petz, Denes: Quantum Information Theory and Quantum Statistics. Springer, Berlin (2008)

    MATH  Google Scholar 

  20. Bennett, Charles H., DiVincenzo, David P., Smolin, John A., Wootters, William K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54(5), 3824–3851 (1996). arXiv:quant-ph/9604024

    Article  ADS  MathSciNet  Google Scholar 

  21. Kuznetsova, Anna A.: Quantum conditional entropy for infinite-dimensional systems. Theory Probab. Appl. 55(4), 709–717 (2011). arXiv:1004.4519

    Article  MathSciNet  Google Scholar 

  22. Falk, Harold: Inequalities of J. W. Gibbs. Am. J. Phys. 38(7), 858–869 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  23. Lindblad, Göran: Entropy, information and quantum measurements. Commun. Math. Phys. 33(4), 305–322 (1973)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

I acknowledge support from the National Science Foundation under Grant No. 1714215. I am grateful to an anonymous referee for correcting an error and a typo in a previous version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark M. Wilde.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilde, M.M. Optimal uniform continuity bound for conditional entropy of classical–quantum states. Quantum Inf Process 19, 61 (2020). https://doi.org/10.1007/s11128-019-2563-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2563-4

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy