Abstract
Let q be a prime power with \(\mathrm{gcd}(q,6)=1\). Let \(R={\mathbb {F}}_{q^2}+u{\mathbb {F}}_{q^2}+v{\mathbb {F}}_{q^2}+uv{\mathbb {F}}_{q^2}\), where \(u^2=u\), \(v^2=v\) and \(uv=vu\). In this paper, we give the definition of linear skew constacyclic codes over \({\mathbb {F}}_{q^2}R\). By the decomposition method, we study the structural properties and determine the generator polynomials and the minimal generating sets of linear skew constacyclic codes. We define a Gray map from \({\mathbb {F}}_{q^2}^{\alpha }\times R^{\beta }\) to \({\mathbb {F}}_{q^2}^{\alpha +4\beta }\) preserving the Hermitian orthogonality, where \(\alpha \) and \(\beta \) are positive integers. As an application, by Hermitian construction, we obtain some good quantum error-correcting codes.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abualrub, T., Ghrayeb, A., Aydin, N., Siap, I.: On the construction of skew quasi-cyclic codes. IEEE Trans. Inf. Theory 56(5), 2081–2090 (2010)
Abualrub, T., Aydin, N., Seneviratne, P.: On \(\theta \)-cyclic codes over \({\mathbb{F}}_{2}+v{\mathbb{F}}_2\). Aust. J. Combin. 54, 115–126 (2012)
Abualrub, T., Siap, I., Aydin, N.: \({\mathbb{Z}}_2{\mathbb{Z}}_4\)-Additive cyclic codes. IEEE Trans. Inf. Theory 60(3), 1508–1514 (2014)
Ashraf, M., Mohammad, G.: Quantum codes over \({\mathbb{F}}_{p}\) from cyclic codes over \({\mathbb{F}}_p[u, v]/\langle u^2-1, v^3-v, uv-vu\rangle \). Cryptogr. Commun. 11, 325–335 (2019)
Aydogdu, I., Abualrub, T.: The structure of \({\mathbb{Z}}_2{\mathbb{Z}}_2[u]\)-cyclic and constacyclic codes. IEEE Trans. Inf. Theory 63(8), 4883–4893 (2017)
Aydogdu, I., Abualrub, T.: The structure of \({\mathbb{Z}}_2{\mathbb{Z}}_{2^s}\)-additive cyclic codes. Discrete Math. Algorithms Appl. 10(4), 1850048 (2018)
Aydogdu, I., Siap, I.: On \({\mathbb{Z}}_{p^r}{\mathbb{Z}}_{p^s}\)-additive codes. Linear Multilinear Algebra 63(10), 2089–2102 (2014)
Aydin, N., Abualrub, T.: Optimal quantum codes from additive skew cyclic codes. Discrete Math. Algorithm Appl. 8(2), 1650037 (2016)
Boucher, D., Sol, P., Ulmer, F.: Skew constacyclic codes over Galois rings. Adv. Math. Commun. 2, 273–292 (2008)
Borges, J., Fernández-Córdoba, C., Ten-Valls, R.: \({\mathbb{Z}}_2{\mathbb{Z}}_4\)-Additive cyclic codes, generator polynomials and dual codes. IEEE. Trans. Inf. Theory 62(11), 6348–6354 (2016)
Bhaintwal, M.: Skew quasi-cyclic codes over Galois rings. Des. Codes Cryptogr. 62(1), 85–101 (2012)
Boucher, D., Geiselmann, W., Ulmmer, F.: Skew cyclic codes. Appl. Algebra Eng. Commun. Comput. 18(4), 379–389 (2007)
Boucher, D., Solé, D., Ulmmer, F.: Skew constacyclic codes over Galois rings. Adv. Math. Commun. 2(3), 273–292 (2008)
Bag, T., Dinh, H., Upadhyay, A., Bandi, R., Yamaka, W.: Quantum codes from skew constacyclic codes over the ring \({\mathbb{F}}_{q}[u, v]/\langle u^2-1, v^2-1, uv-vu\rangle \). Discrete Math. 343(3), 111737 (2020)
Calderbank, A.R., Rains, E., Shor, P., Sloane, N.J.A.: Quantum error correction via codes over \({\mathbb{F}}_{4}\). IEEE Trans. Inf. Theory 44, 1369–1387 (1998)
Chen, Z., Zhou, K., Liao, Q.: Quantum identity authentication scheme of vehicular ad-hoc networks. Int. J. Theor. Phys. 58(1), 40–57 (2019)
Delsarte, P.: An algebraic approach to the association schemes of coding theory. Ph.D. dissertation, Universite Catholique de Louvain (1973)
Diao, L., Gao, J.: \({\mathbb{Z}}_{p}{\mathbb{Z}}_{p}[u]\)-additive cyclic codes. Int. J. Inf. Coding Theory 5(1), 1–17 (2018)
Edel, Y.: Some good quantum twisted codes. https://www.mathi.uni-heidelberg.de/~yves/Matritzen/QTBCH/QTBCHIndex.html. Accessed 20 Dec 2019
Gao, Y., Gao, J., Fu, F.-W.: On Quantum codes from cyclic codes over the ring \({\mathbb{F}}_{q}+v_1{\mathbb{F}}_{q}+\cdots +v_r{\mathbb{F}}_{q}\). Appl. Algebra Eng. Commun. Comput. 30(2), 161–174 (2019)
Gao, J.: Quantum codes from cyclic codes over \({\mathbb{F}}_{q}+v{\mathbb{F}}_{q}+v^2{\mathbb{F}}_{q}+v^3{\mathbb{F}}_{q}\). Int. J. Quantum Inf. 13(8), 1550063(1-8) (2015)
Gao, J., Ma, F., Fu, F.-W.: Skew constacyclic codes over the ring \({\mathbb{F}}_{q}+v{\mathbb{F}}_{q}\). Appl. Comput. Math. 6(3), 286–295 (2017)
Guzeltepe, M., Sari, M.: Quantum codes from codes over the ring \({\mathbb{F}}_{q}+\alpha {\mathbb{F}}_{q}\). Quantum Inf. Process. 18(12), 365 (2019)
Gursoy, F., Siap, I., Yildiz, B.: Construction of skew cyclic codes over \({\mathbb{F}}_{q}+v{\mathbb{F}}_{q}\). Adv. Math. Commun. 8(3), 313–322 (2014)
Islam, H., Prakash, O.: Quantum codes from the cyclic codes over \({\mathbb{F}}_{p}[u, v, w]/\langle u^2-1, v^2-1, w^2-1, uv-vu, vw-wv, wu-uw\rangle \). J. Appl. Math. Comput. 60, 625–635 (2019)
Jitman, S., Ling, S., Udomkavanich, P.: Skew constacyclic codes over finite chain rings. Adv. Math. Commun. 6(1), 39–63 (2012)
Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52, 4892–4914 (2006)
Ma, F., Gao, J., Fu, F.-W.: New non-binary quantum codes from constacyclic codes over \({\mathbb{F}}_{p}[u, v]/\langle u^2-1, v^2-v, uv-vu\rangle \). Adv. Math. Commun. 13(2), 421–434 (2019)
Ma, F., Gao, J., Fu, F.-W.: Constacyclic codes over the ring \(\mathbb{F}_{q}+v \mathbb{F}_{q}+v^2\mathbb{F}_{q}\) and their applications of constructing new non-binary quantum codes. Quantum Inf. Process. 17, 122 (2018). https://doi.org/10.1007/s11128-018-1898-6
Mi, J., Cao, X., Xu, S., Luo, G.: Quantum codes from Hermitian dual-containing cyclic codes. Int. J. Comput. Math. 2(3), 14 (2016)
Özen, M., Özzaim, N., Ince, H.: Quantum codes from cyclic codes over \({\mathbb{F}}_{3}+u{\mathbb{F}}_3+v{\mathbb{F}}_{3}+uv{\mathbb{F}}_{3}\). Int. Conf. Quantum Sci. Appl. J. Phys. Conf. Ser. 766, 012020-1–012020-6 (2016)
Shor, P.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52(4), 2493–2496 (1995)
Qian, L., Cao, X.: Bounds and optimal \(q\)-ary codes derived from the \({\mathbb{Z}}_qR\)-cyclic codes. IEEE Trans. Inf. Theory 66(2), 923–935 (2019)
Siap, I., Abualrub, I., Aydin, N., Seneviratne, P.: Skew cyclic codes of arbitrary length. Int. J. Inf. Coding Theory 2(1), 10–20 (2011)
Srinivasulu, B., Maheshanand, B.: \({\mathbb{Z}}_2({\mathbb{Z}}_2+u{\mathbb{Z}}_2)\)-Additive cyclic codes and their duals. Discrete Math. Algorithms Appl. 8(2), 1650027-1–1650027-19 (2016)
Shi, M., Qian, L., Sok, L., Solé, P.: On constacyclic codes over \(Z_4[u]/\langle u^2-1\rangle \) and their Gray images. Finite Fields Appl. 45, 86–95 (2017)
Valdebenito, A., Tironi, A.: On the dual codes of skew constacylclic codes. Adv. Math. Commun. 12, 659–679 (2018)
Wang, Y., Gao, J.: MacDonald codes over the ring \({\mathbb{F}}_p+v{\mathbb{F}}_p+v^2{\mathbb{F}}_p\). Comput. Appl. Math. 38(4), 169 (2019)
Xiao, H., Zhang, Z., Chronopoulos, A.: New construction of quantum error avoiding codes via group representation of quantum stabilizer codes. Eur. Phys. J. C 77(10), 667–680 (2017)
Xiao, H., Zhang, Z.: Subcarrier multiplexing multiple-input multiple-output quantum key distribution with orthogonal quantum states. Quantum Inf. Process. 16(13), 1–18 (2017)
Xin, X., He, Q., Wang, Z., Yang, Q., Li, F.: Efficient arbitrated quantum signature scheme without entangled states. Mod. Phys. Lett. A 34(21), 1950166 (2019)
Yao, T., Shi, M., Solé, P.: Skew cyclic codes over \({\mathbb{F}}_{q}+u{\mathbb{F}}_q+v{\mathbb{F}}_{q}+uv{\mathbb{F}}_{q}\). J. Algebra Comb. Discrete Struct. Appl. 2(3), 163–168 (2015)
Zheng, X., Bo, K.: Cyclic codes and \(\lambda _1+\lambda _2u+\lambda _3v+\lambda _4uv\)-constacyclic codes over \({\mathbb{F}}_{p}+u{\mathbb{F}}_{p}+v{\mathbb{F}}_{p}+uv{\mathbb{F}}_{p}\). Appl. Math. Comput. 306, 86–91 (2017)
Acknowledgements
This research is supported by the 973 Program of China (Grant No. 2013CB834204), the National Natural Science Foundation of China (Grant Nos. 61571243, 11701336, 11626144 and 11671235), the Fundamental Research Funds for the Central Universities of China, the Scientific Research Fund of Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering (Changsha University of Science & Technology) (Grant No. 2018MMAEZD04).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Li, J., Gao, J., Fu, FW. et al. \({\mathbb {F}}_qR\)-linear skew constacyclic codes and their application of constructing quantum codes. Quantum Inf Process 19, 193 (2020). https://doi.org/10.1007/s11128-020-02700-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02700-x