Skip to main content

Advertisement

Log in

Conditional generation of multiphoton-subtracted squeezed vacuum states: loss consideration and operator description

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In terms of the characteristic functions of the quantum states, we present a complete operator description of a lossy photon-subtraction scheme. Feeding a single-mode squeezed vacuum into a variable beam splitter and counting the photons in one of the output channels, a broad class of multiphoton-subtracted squeezed vacuum states (MSSVSs) can be generated in other channel. Here, the losses are considered in the beginning and the end channels in the circuit. Indeed, this scheme has been discussed in Ref. [Phys. Rev. A 100, 022341 (2019)]. However, different from the above work, we give all the details of the optical fields in all stages. In addition, we present the analytical expressions and numerical simulations for the success probability, the quadrature and number squeezing effect, photon number distribution, and Wigner function of the MSSVSs. Some interesting results effected by the losses are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Braunstein, S.L., van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  2. Serafini, A.: Quantum continuous variables, A primer of theoretical methods. CRC Press, Taylor & Francis Group (2017)

    Book  Google Scholar 

  3. Wang, X.B., Hiroshima, T., Tomita, A., Hayashi, M.: Quantum information with Gaussian states. Physics Reports 448, 1–111 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  4. Gagatsos, C.N., Guha, S.: Efficient representation of Gaussian states for multimode non-Gaussian quantum state engineering via subtraction of arbitrary number of photons. Phys. Rev. A 99, 053816 (2019)

    Article  ADS  Google Scholar 

  5. Lloyd, S., Braunstein, S.L.: Quantum computation over continuous variables. Phys. Rev. Lett. 82, 1784–1787 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  6. Dowling, J.P.: Quantum optical metrology—the lowdown on high-N00N states. Contemp. Phys. 49, 125–143 (2008)

    Article  ADS  Google Scholar 

  7. Navarrete-Benlloch, C., Garcia-Patron, R., Shapiro, J.H., Cerf, N.J.: Enhancing quantum entanglement by photon addition and subtraction. Phys. Rev. A 86, 012328 (2012)

    Article  ADS  Google Scholar 

  8. Bartley, T.J., Crowley, P.J.D., Datta, A., Nunn, J., Zhang, L., Walmsley, I.: Strategies for enhancing quantum entanglement by local photon subtraction. Phys. Rev. A 87, 022313 (2013)

    Article  ADS  Google Scholar 

  9. Opatrny, T., Kurizki, G., Welsch, D.G.: Improvement on teleportation of continuous variables by photon subtraction via conditional measurement. Phys. Rev. A 61, 032302 (2000)

    Article  ADS  Google Scholar 

  10. Dey, S., Hussin, V.: Noncommutative q-photon-added coherent states. Phys. Rev. A 93, 053824 (2016)

    Article  ADS  Google Scholar 

  11. Dey, S.: q-Deformed noncommutative cat states and their nonclassical properties. Phys. Rev. D 91, 044024 (2015)

    Article  ADS  Google Scholar 

  12. Dey, S., Fring, A., Hussin, V.: Nonclassicality versus entanglement in a noncommutative space. Inter. J. Mod. Phys. B 30, 1650248 (2016)

    Article  Google Scholar 

  13. Zelaya, K., Dey, S., Hussin, V.: Generalized squeezed states. Phys. Lett. A 382, 3369–3375 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  14. Biswas, A., Agarwal, G.S.: Nonclassicality and decoherence of photon-subtracted squeezed states. Phys. Rev. A 75, 032104 (2007)

    Article  ADS  Google Scholar 

  15. Ourjoumtsev, A., Tualle-Brouri, R., Laurat, J., Grangier, P.: Generating optical schrodinger kittens for quantum information processing. Science 312, 83–86 (2006)

    Article  ADS  Google Scholar 

  16. Gerrits, T., Glancy, S., Clement, T.S., Calkins, B., Lita, A.E., Miller, A.J., Migdall, A.L., Nam, S.W., Mirin, R.P., Knill, E.: Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum. Phys. Rev. A 82, 031802(R) (2010)

    Article  ADS  Google Scholar 

  17. Dakna, M., Anhut, T., Opatrny, T., Knoll, L., Welsch, D.G.: Generating Schrodinger-cat-like states by means of conditional measurements on a beam splitter. Phys. Rev. A 55, 3184–3194 (1997)

    Article  ADS  Google Scholar 

  18. Ulanov, A.E., Fedorov, I.A., Pushkina, A.A., Kurochkin, Y.V., Ralph, T.C., Lvovsky, A.I.: Undoing the effect of loss on quantum entanglement. Nat. Photon. 9, 764–768 (2015)

    Article  ADS  Google Scholar 

  19. Hacker, B., Wette, S., Daiss, S., Shaukat, A., Ritter, S., Li, L., Rempe, G.: Deterministic creation of entangled atom light Schrodinger-cat states. Nat. Photon. 13, 110–115 (2019)

    Article  ADS  Google Scholar 

  20. Quesada, N., Helt, L.G., Izaac, J., Arrazola, J.M., Shahrokhshahi, R., Myers, C.R., Sabapathy, K.K.: Simulating realistic non-Gaussian state preparation. Phys. Rev. A 100, 022341 (2019)

    Article  ADS  Google Scholar 

  21. Dell’Anno, F., De Siena, S., Illuminati, F.: Realistic continuous-variable quantum teleportation with non-Gaussian resources. Phys. Rev. A 81, 012333 (2010)

    Article  ADS  Google Scholar 

  22. Cahill, K.E., Glauber, R.J.: Density operators and quasiprobability distributions. Phys. Rev. 177, 1882–1902 (1969)

    Article  ADS  Google Scholar 

  23. Marian, P., Marian, T.A.: Continuous-variable teleportation in the characteristic-function description. Phys. Rev. A 74, 042306 (2006)

    Article  ADS  Google Scholar 

  24. Xu, X.X., Yuan, H.C.: Some evolution formulas on the optical fields propagation in realistic environments. Int. J. Theor. Phys. 56, 791–801 (2017)

    Article  MathSciNet  Google Scholar 

  25. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  26. Barnett, S.M., Radmore, P.M.: Methods in Theoretical Quantum Optics. Clarendon Press, Oxford (1997)

    MATH  Google Scholar 

  27. Loudon, R.: The Quantum Theory of Light. Oxford University Press, New York (2000)

    MATH  Google Scholar 

  28. Auletta, G.: Foundations and interpretation of quantum mechanics. World Scientific, Singapore (2001)

    Google Scholar 

  29. Xu, X.X., Yuan, H.C.: Quantum phase estimation with local amplified 1001 state based on Wigner-function method. Quantum Inf Process 14, 411–424 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  30. Xu, X.X., Yuan, H.C.: Optical parametric amplification of single photon: Statistical properties and quantum interference. Int. J. Theor. Phys. 53, 1601–1613 (2014)

    Article  Google Scholar 

  31. Kenfack, A., Zyczkowski, K.: Negativity of the Wigner function as an indicator of non-classicality. J. Opt. B: Quantum Semiclass. Opt. 6, 396–404 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  32. Albarelli, F., Genoni, M.G., Paris, M.G.A., Ferraro, A.: Resource theory of quantum non-Gaussianity and Wigner negativity. Phys. Rev. A 98, 052350 (2018)

    Article  ADS  Google Scholar 

  33. Takagi, R., Zhuang, Q.: Convex resource theory of non-Gaussianity. Phys. Rev. A 97, 062337 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-xiang Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This project was supported by the National Natural Science Foundation of China (No.11665013).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Xx., Yuan, Hc. Conditional generation of multiphoton-subtracted squeezed vacuum states: loss consideration and operator description. Quantum Inf Process 19, 324 (2020). https://doi.org/10.1007/s11128-020-02823-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02823-1

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy