Abstract
In terms of the characteristic functions of the quantum states, we present a complete operator description of a lossy photon-subtraction scheme. Feeding a single-mode squeezed vacuum into a variable beam splitter and counting the photons in one of the output channels, a broad class of multiphoton-subtracted squeezed vacuum states (MSSVSs) can be generated in other channel. Here, the losses are considered in the beginning and the end channels in the circuit. Indeed, this scheme has been discussed in Ref. [Phys. Rev. A 100, 022341 (2019)]. However, different from the above work, we give all the details of the optical fields in all stages. In addition, we present the analytical expressions and numerical simulations for the success probability, the quadrature and number squeezing effect, photon number distribution, and Wigner function of the MSSVSs. Some interesting results effected by the losses are obtained.










Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Braunstein, S.L., van Loock, P.: Quantum information with continuous variables. Rev. Mod. Phys. 77, 513–577 (2005)
Serafini, A.: Quantum continuous variables, A primer of theoretical methods. CRC Press, Taylor & Francis Group (2017)
Wang, X.B., Hiroshima, T., Tomita, A., Hayashi, M.: Quantum information with Gaussian states. Physics Reports 448, 1–111 (2007)
Gagatsos, C.N., Guha, S.: Efficient representation of Gaussian states for multimode non-Gaussian quantum state engineering via subtraction of arbitrary number of photons. Phys. Rev. A 99, 053816 (2019)
Lloyd, S., Braunstein, S.L.: Quantum computation over continuous variables. Phys. Rev. Lett. 82, 1784–1787 (1999)
Dowling, J.P.: Quantum optical metrology—the lowdown on high-N00N states. Contemp. Phys. 49, 125–143 (2008)
Navarrete-Benlloch, C., Garcia-Patron, R., Shapiro, J.H., Cerf, N.J.: Enhancing quantum entanglement by photon addition and subtraction. Phys. Rev. A 86, 012328 (2012)
Bartley, T.J., Crowley, P.J.D., Datta, A., Nunn, J., Zhang, L., Walmsley, I.: Strategies for enhancing quantum entanglement by local photon subtraction. Phys. Rev. A 87, 022313 (2013)
Opatrny, T., Kurizki, G., Welsch, D.G.: Improvement on teleportation of continuous variables by photon subtraction via conditional measurement. Phys. Rev. A 61, 032302 (2000)
Dey, S., Hussin, V.: Noncommutative q-photon-added coherent states. Phys. Rev. A 93, 053824 (2016)
Dey, S.: q-Deformed noncommutative cat states and their nonclassical properties. Phys. Rev. D 91, 044024 (2015)
Dey, S., Fring, A., Hussin, V.: Nonclassicality versus entanglement in a noncommutative space. Inter. J. Mod. Phys. B 30, 1650248 (2016)
Zelaya, K., Dey, S., Hussin, V.: Generalized squeezed states. Phys. Lett. A 382, 3369–3375 (2018)
Biswas, A., Agarwal, G.S.: Nonclassicality and decoherence of photon-subtracted squeezed states. Phys. Rev. A 75, 032104 (2007)
Ourjoumtsev, A., Tualle-Brouri, R., Laurat, J., Grangier, P.: Generating optical schrodinger kittens for quantum information processing. Science 312, 83–86 (2006)
Gerrits, T., Glancy, S., Clement, T.S., Calkins, B., Lita, A.E., Miller, A.J., Migdall, A.L., Nam, S.W., Mirin, R.P., Knill, E.: Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum. Phys. Rev. A 82, 031802(R) (2010)
Dakna, M., Anhut, T., Opatrny, T., Knoll, L., Welsch, D.G.: Generating Schrodinger-cat-like states by means of conditional measurements on a beam splitter. Phys. Rev. A 55, 3184–3194 (1997)
Ulanov, A.E., Fedorov, I.A., Pushkina, A.A., Kurochkin, Y.V., Ralph, T.C., Lvovsky, A.I.: Undoing the effect of loss on quantum entanglement. Nat. Photon. 9, 764–768 (2015)
Hacker, B., Wette, S., Daiss, S., Shaukat, A., Ritter, S., Li, L., Rempe, G.: Deterministic creation of entangled atom light Schrodinger-cat states. Nat. Photon. 13, 110–115 (2019)
Quesada, N., Helt, L.G., Izaac, J., Arrazola, J.M., Shahrokhshahi, R., Myers, C.R., Sabapathy, K.K.: Simulating realistic non-Gaussian state preparation. Phys. Rev. A 100, 022341 (2019)
Dell’Anno, F., De Siena, S., Illuminati, F.: Realistic continuous-variable quantum teleportation with non-Gaussian resources. Phys. Rev. A 81, 012333 (2010)
Cahill, K.E., Glauber, R.J.: Density operators and quasiprobability distributions. Phys. Rev. 177, 1882–1902 (1969)
Marian, P., Marian, T.A.: Continuous-variable teleportation in the characteristic-function description. Phys. Rev. A 74, 042306 (2006)
Xu, X.X., Yuan, H.C.: Some evolution formulas on the optical fields propagation in realistic environments. Int. J. Theor. Phys. 56, 791–801 (2017)
Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)
Barnett, S.M., Radmore, P.M.: Methods in Theoretical Quantum Optics. Clarendon Press, Oxford (1997)
Loudon, R.: The Quantum Theory of Light. Oxford University Press, New York (2000)
Auletta, G.: Foundations and interpretation of quantum mechanics. World Scientific, Singapore (2001)
Xu, X.X., Yuan, H.C.: Quantum phase estimation with local amplified 1001 state based on Wigner-function method. Quantum Inf Process 14, 411–424 (2015)
Xu, X.X., Yuan, H.C.: Optical parametric amplification of single photon: Statistical properties and quantum interference. Int. J. Theor. Phys. 53, 1601–1613 (2014)
Kenfack, A., Zyczkowski, K.: Negativity of the Wigner function as an indicator of non-classicality. J. Opt. B: Quantum Semiclass. Opt. 6, 396–404 (2004)
Albarelli, F., Genoni, M.G., Paris, M.G.A., Ferraro, A.: Resource theory of quantum non-Gaussianity and Wigner negativity. Phys. Rev. A 98, 052350 (2018)
Takagi, R., Zhuang, Q.: Convex resource theory of non-Gaussianity. Phys. Rev. A 97, 062337 (2018)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This project was supported by the National Natural Science Foundation of China (No.11665013).
Rights and permissions
About this article
Cite this article
Xu, Xx., Yuan, Hc. Conditional generation of multiphoton-subtracted squeezed vacuum states: loss consideration and operator description. Quantum Inf Process 19, 324 (2020). https://doi.org/10.1007/s11128-020-02823-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02823-1