Skip to main content

Advertisement

Log in

Search on vertex-transitive graphs by lackadaisical quantum walk

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The lackadaisical quantum walk is a discrete-time, coined quantum walk on a graph with a weighted self-loop at each vertex. It uses a generalized Grover coin and the flip-flop shift, which makes it equivalent to Szegedy’s quantum Markov chain. It has been shown that a lackadaisical quantum walk can improve spatial search on the complete graph, discrete torus, cycle, and regular complete bipartite graph. In this paper, we observe that these are all vertex-transitive graphs, and when there is a unique marked vertex, the optimal weight of the self-loop equals the degree of the loopless graph divided by the total number of vertices. We propose that this holds for all vertex-transitive graphs with a unique marked vertex. We present a number of numerical simulations supporting this hypothesis, including search on periodic cubic lattices of arbitrary dimension, strongly regular graphs, Johnson graphs, and the hypercube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Meyer, D.A.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85(5–6), 551–574 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  2. Meyer, D.A.: On the absence of homogeneous scalar unitary cellular automata. Phys. Lett. A 223(5), 337–340 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  3. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: Quantum walks on graphs. In: Proceedings of the Thirty-third Annual ACM Symposium on Theory of Computing, STOC ’01, pp. 50–59. ACM, New York, NY, USA (2001)

  4. Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing, STOC ’01, pp. 37–49. ACM, New York, NY, USA (2001)

  5. Shenvi, N., Kempe, J., Whaley, K.B.: Quantum random-walk search algorithm. Phys. Rev. A 67, 052307 (2003)

    Article  ADS  Google Scholar 

  6. Ambainis, A.: Quantum walk algorithm for element distinctness. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’04, pp. 22–31. IEEE Computer Society (2004)

  7. Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’05, pp. 1109–1117. SIAM, Philadelphia, PA, USA (2005)

  8. Farhi, E., Goldstone, J., Gutmann, S.: A quantum algorithm for the Hamiltonian NAND tree. Theory Comput. 4(8), 169–190 (2008)

    Article  MathSciNet  Google Scholar 

  9. Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’05, pp. 1099–1108. SIAM, Philadelphia, PA, USA (2005)

  10. Reitzner, D., Hillery, M., Feldman, E., Bužek, V.: Quantum searches on highly symmetric graphs. Phys. Rev. A 79, 012323 (2009)

    Article  ADS  Google Scholar 

  11. Rhodes, M.L., Wong, T.G.: Quantum walk search on the complete bipartite graph. Phys. Rev. A 99, 032301 (2019)

    Article  ADS  Google Scholar 

  12. Xue, X.L., Liu, Z.H., Chen, H.W.: Search algorithm on strongly regular graphs based on scattering quantum walk. Chin. Phys. B 26(1), 010301 (2017)

    Article  ADS  Google Scholar 

  13. Xue, Xl, Ruan, Y., Liu, Zh: Discrete-time quantum walk search on Johnson graphs. Quantum Inf. Process. 18(2), 50 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  14. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, STOC ’96, pp. 212–219. ACM, New York, NY, USA (1996)

  15. Wong, T.G.: Grover search with lackadaisical quantum walks. J. Phys. A: Math. Theor. 48(43), 435304 (2015)

    Article  MathSciNet  Google Scholar 

  16. Wong, T.G.: Coined quantum walks on weighted graphs. J. Phys. A: Math. Theor. 50(47), 475301 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  17. Inui, N., Konno, N., Segawa, E.: One-dimensional three-state quantum walk. Phys. Rev. E 72, 056112 (2005)

    Article  ADS  Google Scholar 

  18. Szegedy, M.: Quantum speed-up of Markov chain based algorithms. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’04, pp. 32–41. IEEE Computer Society, Washington, DC, USA (2004)

  19. Wong, T.G.: Faster search by lackadaisical quantum walk. Quantum Inf. Process. 17(3), 68 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  20. Saha, A., Majumdar, R., Saha, D., Chakrabarti, A., Sur-Kolay, S.: Search of clustered marked states with lackadaisical quantum walks. arXiv:1804.01446 [quant-ph] (2018)

  21. Nahimovs, N.: Lackadaisical quantum walks with multiple marked vertices. In: Proceedings of the 45th International Conference on Current Trends in Theory and Practice of Computer Science, SOFSEM 2019, pp. 368–378. Nový Smokovec, Slovakia (2019)

  22. Giri, P.R., Korepin, V.: Lackadaisical quantum walk for spatial search. Modern Phys. Lett. A 35, 2050043 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  23. Rhodes, M.L., Wong, T.G.: Search by lackadaisical quantum walks with nonhomogeneous weights. Phys. Rev. A 100, 042303 (2019)

    Article  ADS  Google Scholar 

  24. Wong, T.G., Santos, R.A.M.: Exceptional quantum walk search on the cycle. Quantum Inf. Process. 16(6), 154 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  25. Wang, H., Zhou, J., Wu, J., Yi, X.: Adjustable self-loop on discrete-time quantum walk and its application in spatial search (2017). arXiv:1707.00601 [quant-ph]

  26. Godsil, C., Royle, G.: Algebraic Graph Theory. Volume 207 of Graduate Texts in Mathematics. Springer, Berlin (2001)

    Book  Google Scholar 

  27. Cameron, P., van Lint, J.: Designs, Graphs. Codes and Their Links. London Mathematical Society Student Texts. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  28. Buhrman, H., Špalek, R.: Quantum verification of matrix products. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, SODA ’06, p. 880-889. Society for Industrial and Applied Mathematics, USA (2006)

  29. Janmark, J., Meyer, D.A., Wong, T.G.: Global symmetry is unnecessary for fast quantum search. Phys. Rev. Lett. 112, 210502 (2014)

    Article  ADS  Google Scholar 

  30. Prūsis, K., Vihrovs, J., Wong, T.G.: Doubling the success of quantum walk search using internal-state measurements. J. Phys. A: Math. Theor. 49(45), 455301 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  31. Wong, T.G.: Quantum walk search on Johnson graphs. J. Phys. A: Math. Theor. 49(19), 195303 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  32. Wong, T.G.: Diagrammatic approach to quantum search. Quantum Inf. Process. 14(6), 1767–1775 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  33. Høyer, P., Yu, Z.: Analysis of lackadaisical quantum walks (2020). arXiv:2002.11234 [quant-ph]

Download references

Acknowledgements

Thanks to Peter Høyer and Zhan Yu for useful discussions. This work was partially supported by T.W.’s startup funds from Creighton University

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas G. Wong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rhodes, M.L., Wong, T.G. Search on vertex-transitive graphs by lackadaisical quantum walk. Quantum Inf Process 19, 334 (2020). https://doi.org/10.1007/s11128-020-02841-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02841-z

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy