Abstract
In this work, we present a quantum secret sharing scheme based on Bell state entanglement and sequential projection measurements. The protocol verifies the n out of n scheme and supports the aborting of the protocol in case all the parties do not divulge in their valid measurement outcomes. The operator–qubit pair forms an integral part of the scheme determining the classical secret to be shared. The protocol is robust enough to neutralize any eavesdropping on a particular qubit of the dealer. The experimental demonstration of the scheme is done on IBM-QE cloud platform with backends IBMQ_16_Melbourne and IBMQ_QASM_SIMULATOR_V0.1.547 simulator. The security analysis performed on the scheme and the comparative analysis support our claim of a stringent and an efficient scheme as compared to some recent quantum and semi-quantum techniques of secret sharing.






Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
Shor, P. W: Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE, (1994)
Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. Royal Soc. Lond. Ser. A Math. Phys. Sci. 439(1907), 553–558 (1992)
Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)
Bužek, V., Hillery, M.: Quantum copying: beyond the no-cloning theorem. Phys. Rev. A 54(3), 1844 (1996)
Alexander Semenovich Holevo: Bounds for the quantity of information transmitted by a quantum communication channel. Problemy Peredachi Informatsii 9(3), 3–11 (1973)
Bennett, C.H.P., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560(12), 7–11 (2014)
Ekert, A.K.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67(6), 661 (1991)
Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121 (1992)
Dušek, M., Haderka, O., Hendrych, M., Myška, R.: Quantum identification system. Phys. Rev. A 60(1), 149 (1999)
Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002)
Deng, F.-G., Long, G.L., Liu, X.-S.: Two-step quantum direct communication protocol using the einstein-podolsky-rosen pair block. Phys. Rev. A 68(4), 042317 (2003)
Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)
Lee, H., Hong, C., Kim, H., Lim, J., Yang, H.J.: Arbitrated quantum signature scheme with message recovery. Phys. Lett. A 321(5–6), 295–300 (2004)
Li, Q., Chan, W.H., Long, D.-Y.: Arbitrated quantum signature scheme using bell states. Phys. Rev. A 79(5), 054307 (2009)
Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)
Greenberger, D.M., Horne, M.A., Zeilinger, A.: Bell’s theorem, quantum theory, and conceptions of the universe, (1989)
Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162 (1999)
Xiao, L., Long, G.L., Deng, F.-G., Pan, J.-W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69(5), 052307 (2004)
Zhang, Z., Li, Y., Man, Z.: Multiparty quantum secret sharing. Phys. Rev. A 71(4), 044301 (2005)
Guo, G.-P., Guo, G.-C.: Quantum secret sharing without entanglement. Phys. Rev. A 310(4), 247–251 (2003)
Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61(4), 042311 (2000)
Tittel, W., Zbinden, H., Gisin, N.: Experimental demonstration of quantum secret sharing. Phys. Rev. A 63(4), 042301 (2001)
Deng, F.-G., Li, X.-H., Zhou, H.-Y., Zhang, Z.: Improving the security of multiparty quantum secret sharing against trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)
Schmid, C., Trojek, P., Bourennane, M., Kurtsiefer, C., Żukowski, M., Weinfurter, H.: Experimental single qubit quantum secret sharing. Phys. Rev. Lett. 95(23), 230505 (2005)
Zhang, Z., Man, Z.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72(2), 022303 (2005)
Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78(4), 042309 (2008)
Hsu, L.-Y.: Quantum secret-sharing protocol based on grover’s algorithm. Phys. Rev. A 68(2), 022306 (2003)
Fortescue, B., Gour, G.: Reducing the quantum communication cost of quantum secret sharing. IEEE Trans. Inform. Theory 58(10), 6659–6666 (2012)
Maitra, A., De, S.J., Paul, G., Pal, A.K.: Proposal for quantum rational secret sharing. Phys. Rev. A 92(2), 022305 (2015)
Qin, H., Tang, W.K.S., Tso, R.: Hierarchical quantum secret sharing based on special high-dimensional entangled state. IEEE J. Selected Topics Quant. Electron. 26(3), 1–6 (2020)
Yang, W., Huang, L., Shi, R., He, L.: Secret sharing based on quantum fourier transform. Quant. Inform. Process. 12(7), 2465–2474 (2013)
Qin, H., Tso, R., Dai, Y.: Multi-dimensional quantum state sharing based on quantum fourier transform. Quant. Inform. Process. 17(3), 48 (2018)
Xiao, H., Gao, J.: Multi-party d-level quantum secret sharing scheme. Int. J. Theor. Phys. 52(6), 2075–2082 (2013)
Song, X.-L., Liu, Y.-B., Deng, H.-Y., Xiao, Y.-G.: (t, n) threshold d-level quantum secret sharing. Sci. Rep. 7(1), 6366 (2017)
Mashhadi, S.: General secret sharing based on quantum fourier transform. Quant. Inform. Process. 18(4), 114 (2019)
IBM quantum computing platform. https://www.ibm.com/quantum-computing/
Qin, H., Dai, Y.: Verifiable (t, n) threshold quantum secret sharing using d-dimensional bell state. Inform. Process. Lett. 116(5), 351–355 (2016)
Qin, H., Dai, Y.: d-dimensional quantum state sharing with adversary structure. Quant. Inform. Process. 15(4), 1689–1701 (2016)
Zhang, Y., Kai, L., Gao, Y., Wang, M.: Neqr: a novel enhanced quantum representation of digital images. Quant. Inform. Process. 12(8), 2833–2860 (2013)
Acknowledgements
One of the authors, Farhan Musanna, with grant number MHR-01-23-200-428 is grateful to Ministry of Human Resource Development (MHRD), Government of India, and Indian Institute of Technology Roorkee, for providing financial aid for this work. The authors are extremely thankful to IBM for providing access to their Quantum Experience (IBM-QE) cloud servers.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Musanna, F., Kumar, S. A novel three-party quantum secret sharing scheme based on Bell state sequential measurements with application in quantum image sharing. Quantum Inf Process 19, 348 (2020). https://doi.org/10.1007/s11128-020-02854-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-020-02854-8