Skip to main content

Advertisement

Log in

A novel three-party quantum secret sharing scheme based on Bell state sequential measurements with application in quantum image sharing

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this work, we present a quantum secret sharing scheme based on Bell state entanglement and sequential projection measurements. The protocol verifies the n out of n scheme and supports the aborting of the protocol in case all the parties do not divulge in their valid measurement outcomes. The operator–qubit pair forms an integral part of the scheme determining the classical secret to be shared. The protocol is robust enough to neutralize any eavesdropping on a particular qubit of the dealer. The experimental demonstration of the scheme is done on IBM-QE cloud platform with backends IBMQ_16_Melbourne and IBMQ_QASM_SIMULATOR_V0.1.547 simulator. The security analysis performed on the scheme and the comparative analysis support our claim of a stringent and an efficient scheme as compared to some recent quantum and semi-quantum techniques of secret sharing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  2. Shor, P. W: Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE, (1994)

  3. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. Royal Soc. Lond. Ser. A Math. Phys. Sci. 439(1907), 553–558 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)

    Article  ADS  Google Scholar 

  5. Bužek, V., Hillery, M.: Quantum copying: beyond the no-cloning theorem. Phys. Rev. A 54(3), 1844 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  6. Alexander Semenovich Holevo: Bounds for the quantity of information transmitted by a quantum communication channel. Problemy Peredachi Informatsii 9(3), 3–11 (1973)

    MathSciNet  Google Scholar 

  7. Bennett, C.H.P., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560(12), 7–11 (2014)

    Article  MathSciNet  Google Scholar 

  8. Ekert, A.K.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  9. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  10. Dušek, M., Haderka, O., Hendrych, M., Myška, R.: Quantum identification system. Phys. Rev. A 60(1), 149 (1999)

    Article  ADS  Google Scholar 

  11. Boström, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89(18), 187902 (2002)

    Article  ADS  Google Scholar 

  12. Deng, F.-G., Long, G.L., Liu, X.-S.: Two-step quantum direct communication protocol using the einstein-podolsky-rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  13. Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65(4), 042312 (2002)

    Article  ADS  Google Scholar 

  14. Lee, H., Hong, C., Kim, H., Lim, J., Yang, H.J.: Arbitrated quantum signature scheme with message recovery. Phys. Lett. A 321(5–6), 295–300 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  15. Li, Q., Chan, W.H., Long, D.-Y.: Arbitrated quantum signature scheme using bell states. Phys. Rev. A 79(5), 054307 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  16. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  17. Greenberger, D.M., Horne, M.A., Zeilinger, A.: Bell’s theorem, quantum theory, and conceptions of the universe, (1989)

  18. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162 (1999)

    Article  ADS  Google Scholar 

  19. Xiao, L., Long, G.L., Deng, F.-G., Pan, J.-W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69(5), 052307 (2004)

    Article  ADS  Google Scholar 

  20. Zhang, Z., Li, Y., Man, Z.: Multiparty quantum secret sharing. Phys. Rev. A 71(4), 044301 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  21. Guo, G.-P., Guo, G.-C.: Quantum secret sharing without entanglement. Phys. Rev. A 310(4), 247–251 (2003)

    MathSciNet  MATH  Google Scholar 

  22. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61(4), 042311 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  23. Tittel, W., Zbinden, H., Gisin, N.: Experimental demonstration of quantum secret sharing. Phys. Rev. A 63(4), 042301 (2001)

    Article  ADS  Google Scholar 

  24. Deng, F.-G., Li, X.-H., Zhou, H.-Y., Zhang, Z.: Improving the security of multiparty quantum secret sharing against trojan horse attack. Phys. Rev. A 72(4), 044302 (2005)

    Article  ADS  Google Scholar 

  25. Schmid, C., Trojek, P., Bourennane, M., Kurtsiefer, C., Żukowski, M., Weinfurter, H.: Experimental single qubit quantum secret sharing. Phys. Rev. Lett. 95(23), 230505 (2005)

    Article  ADS  Google Scholar 

  26. Zhang, Z., Man, Z.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72(2), 022303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  27. Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78(4), 042309 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  28. Hsu, L.-Y.: Quantum secret-sharing protocol based on grover’s algorithm. Phys. Rev. A 68(2), 022306 (2003)

    Article  ADS  Google Scholar 

  29. Fortescue, B., Gour, G.: Reducing the quantum communication cost of quantum secret sharing. IEEE Trans. Inform. Theory 58(10), 6659–6666 (2012)

    Article  MathSciNet  Google Scholar 

  30. Maitra, A., De, S.J., Paul, G., Pal, A.K.: Proposal for quantum rational secret sharing. Phys. Rev. A 92(2), 022305 (2015)

    Article  ADS  Google Scholar 

  31. Qin, H., Tang, W.K.S., Tso, R.: Hierarchical quantum secret sharing based on special high-dimensional entangled state. IEEE J. Selected Topics Quant. Electron. 26(3), 1–6 (2020)

    Article  Google Scholar 

  32. Yang, W., Huang, L., Shi, R., He, L.: Secret sharing based on quantum fourier transform. Quant. Inform. Process. 12(7), 2465–2474 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  33. Qin, H., Tso, R., Dai, Y.: Multi-dimensional quantum state sharing based on quantum fourier transform. Quant. Inform. Process. 17(3), 48 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  34. Xiao, H., Gao, J.: Multi-party d-level quantum secret sharing scheme. Int. J. Theor. Phys. 52(6), 2075–2082 (2013)

    Article  MathSciNet  Google Scholar 

  35. Song, X.-L., Liu, Y.-B., Deng, H.-Y., Xiao, Y.-G.: (t, n) threshold d-level quantum secret sharing. Sci. Rep. 7(1), 6366 (2017)

    Article  ADS  Google Scholar 

  36. Mashhadi, S.: General secret sharing based on quantum fourier transform. Quant. Inform. Process. 18(4), 114 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  37. IBM quantum computing platform. https://www.ibm.com/quantum-computing/

  38. Qin, H., Dai, Y.: Verifiable (t, n) threshold quantum secret sharing using d-dimensional bell state. Inform. Process. Lett. 116(5), 351–355 (2016)

    Article  MathSciNet  Google Scholar 

  39. Qin, H., Dai, Y.: d-dimensional quantum state sharing with adversary structure. Quant. Inform. Process. 15(4), 1689–1701 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  40. Zhang, Y., Kai, L., Gao, Y., Wang, M.: Neqr: a novel enhanced quantum representation of digital images. Quant. Inform. Process. 12(8), 2833–2860 (2013)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

One of the authors, Farhan Musanna, with grant number MHR-01-23-200-428 is grateful to Ministry of Human Resource Development (MHRD), Government of India, and Indian Institute of Technology Roorkee, for providing financial aid for this work. The authors are extremely thankful to IBM for providing access to their Quantum Experience (IBM-QE) cloud servers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musanna, F., Kumar, S. A novel three-party quantum secret sharing scheme based on Bell state sequential measurements with application in quantum image sharing. Quantum Inf Process 19, 348 (2020). https://doi.org/10.1007/s11128-020-02854-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02854-8

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy