Skip to main content

Advertisement

Log in

Quantum codes from a new construction of self-orthogonal algebraic geometry codes

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present new quantum codes with good parameters which are constructed from self-orthogonal algebraic geometry codes. Our method permits a wide class of curves to be used in the formation of these codes. These results demonstrate that there is a lot more scope for constructing self-orthogonal AG codes than was previously known.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Abhyankar, S.S.: Irreducibility criterion for germs of analytic functions of two complex variables. Adv. Math. 74, 190–257 (1989)

    Article  MathSciNet  Google Scholar 

  2. Abhyankar, S.S.: Algebraic Geometry for Scientists and Engineers. Mathematical Surveys and Monographs, American Mathematical Society, Providence (1990)

    Book  Google Scholar 

  3. Ashikhmin, A., Barg, A., Knill, E., Litsyn, S.: Quantum error-detection I: statement of the problem. IEEE Trans. Inf. Theory 46, 778–788 (2000)

    Article  MathSciNet  Google Scholar 

  4. Ashikhmin, A., Barg, A., Knill, E., Litsyn, S.: Quantum error-detection II: bounds. IEEE Trans. Inf. Theory 46, 789–800 (2000)

    Article  MathSciNet  Google Scholar 

  5. Ashikhmin, A., Knill, E.: Non-binary quantum stabilizer codes. IEEE Trans. Inf. Theory 47, 3065–3072 (2001)

    Article  Google Scholar 

  6. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24, 235–265 (1997)

    Article  MathSciNet  Google Scholar 

  7. Bierbrauer, J., Edel, Y.: Quantum twisted codes. J. Comb. Des. 8, 174–188 (2000)

    Article  MathSciNet  Google Scholar 

  8. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction and orthogonal geometry. Phys. Rev. Lett. 76, 405–409 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  9. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996)

    Article  ADS  Google Scholar 

  10. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44(4), 1369–1387 (1998)

    Article  MathSciNet  Google Scholar 

  11. Campillo, A., Farrán, J.I.: Computing Weierstrass semigroups and the Feng-Rao distance from singular plane models. Finite Fields Appl. 6, 71–92 (2000)

    Article  MathSciNet  Google Scholar 

  12. Duursma, I.M.: Algebraic geometry codes: general theory. In: Advances in Algebraic Geometry Codes, Series of Coding Theory and Cryptology, vol. 5. World Scientific, Singapore (2008)

  13. Feng, K.: Quantum error correcting codes. In: Coding Theory and Cryptology, pp. 91–142. Word Scientific (2002)

  14. Feng, K., Ma, Z.: A finite Gilbert–Varshamov bound for pure stabilizer quantum codes. IEEE Trans. Inf. Theory 50, 3323–3325 (2004)

    Article  MathSciNet  Google Scholar 

  15. Galindo, C., Geil, O., Hernando, F., Ruano, D.: On the distance of stabilizer quantum codes from \(J\)-affine variety codes. Quantum Inf. Process 16, 111 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  16. Galindo, C., Hernando, F., Matsumoto, R.: Quasi-cyclic construction of quantum codes. Finite Fields Appl. 52, 261–280 (2018)

    Article  MathSciNet  Google Scholar 

  17. Galindo, C., Hernando, F., Ruano, D.: Stabilizer quantum codes from \(J\)-affine variety codes and a new Steane-like enlargement. Quantum Inf. Process 14, 3211–3231 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. Galindo, C., Hernando, F., Ruano, D.: Classical and quantum evaluation codes at the trace roots. IEEE Trans. Inf. Theory 16, 2593–2602 (2019)

    Article  MathSciNet  Google Scholar 

  19. Garcia, A.: On AG codes and Artin–Schreier extensions. Commun. Algebra 20(12), 3683–3689 (1992)

    Article  MathSciNet  Google Scholar 

  20. Goppa, V.D.: Geometry and Codes. Mathematics and its Applications, vol. 24. Kluwer, Dordrecht (1991)

    Google Scholar 

  21. Goppa, V.D.: Codes associated with divisors. Probl. Inf. Transm. 13, 22–26 (1977)

    MathSciNet  MATH  Google Scholar 

  22. Gottesman, D.: A class of quantum error-correcting codes saturating the quantum Hamming bound. Phys. Rev. A 54, 1862–1868 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  23. Grassl, M., Rötteler, M.: Quantum BCH codes. In: Proceedings X International Symposium Theory Electrical Engineering, pp. 207–212. Germany (1999)

  24. Grassl, M., Beth, T., Rötteler, M.: On optimal quantum codes. Int. J. Quantum Inf. 2, 757–775 (2004)

    Article  Google Scholar 

  25. He, X., Xu, L., Chen, H.: New \(q\)-ary quantum MDS codes with distances bigger than \(q/2\). Quantum Inf. Process. 15(7), 2745–2758 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  26. Hirschfeld, J.W.P., Korchmáros, G., Torres, F.: Algebraic Curves Over a Finite Field. Princeton Series in Applied Mathematics, Princeton (2008)

    Book  Google Scholar 

  27. Høholdt, T., van Lint, J., Pellikaan, R.: Algebraic geometry codes. Handb. Coding Theory 1, 871–961 (1998)

    MathSciNet  MATH  Google Scholar 

  28. Jin, L., Xing, C.: Euclidean and Hermitian self-orthogonal algebraic geometry codes and their application to quantum codes. IEEE Trans. Inf. Theory 58, 4489–5484 (2012)

    Article  MathSciNet  Google Scholar 

  29. Ketkar, A., Klappenecker, A., Kumar, S., Sarvepalli, P.K.: Nonbinary stabilizer codes over finite fields. IEEE Trans. Inf. Theory 52, 4892–4924 (2006)

    Article  MathSciNet  Google Scholar 

  30. La Guardia, G.G.: Construction of new families of nonbinary quantum BCH codes. Phys. Rev. A 80, 042331 (2009)

    Article  ADS  Google Scholar 

  31. La Guardia, G.G.: On the construction of nonbinary quantum BCH codes. IEEE Trans. Inf. Theory 60, 1528–1535 (2014)

    Article  MathSciNet  Google Scholar 

  32. Lidl, R., Niederreiter, H.: Introduction to Finite Fields and Their Applications. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

  33. Matsumoto, R., Uyematsu, T.: Constructing quantum error correcting codes for \(p^m\) state systems from classical error correcting codes. IEICE Trans. Fund. E83–A, 1878–1883 (2000)

    Google Scholar 

  34. McGuire, G., Yılmaz, E.S.: Divisibility of L-polynomials for a family of Artin–Schreier curves. J. Pure Appl. Algebra 223(8), 3341–3358 (2019)

    Article  MathSciNet  Google Scholar 

  35. Munuera, C., Sepúlveda, A., Torres, F.: Castle curves and codes. Adv. Math. Commun. 3, 399–408 (2009)

    Article  MathSciNet  Google Scholar 

  36. Munuera, C., Tenório, W., Torres, F.: Quantum error-correcting codes from algebraic geometry codes of castle type. Quantum Inf. Process. 15, 4071–4088 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  37. Pellikaan, R., Shen, B.Z., van Wee, G.J.M.: Which linear codes are algebraic-geometric. IEEE Trans. Inf. Theory 37, 583–602 (1991)

    Article  MathSciNet  Google Scholar 

  38. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE Computer Society Press (1994)

  39. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995)

    Article  ADS  Google Scholar 

  40. Steane, A.M.: Multiple-particle interference and quantum error correction. Proc. R. Soc. Lond. Ser. A 452, 2551–2557 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  41. Stichtenoth, H.: Algebraic Function Fields and Codes. Springer, Berlin (2009)

    MATH  Google Scholar 

  42. Tsfasman, M.A., Vlăduţ, S.G., Zink, T.: Modular curves, Shimura curves and AG codes, better than Varshamov–Gilbert bound. Math. Nachr. 109, 21–28 (1982)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank J. I. Farrán and C. Munuera for helpful conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. McGuire.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

G. McGuire was partially supported by Science Foundation Ireland Grant 13/IA/1914. The remainder authors were partially supported by the Spanish Government and the EU funding program FEDER, Grants MTM2015-65764-C3-2-P and PGC2018-096446-B-C22. F. Hernando and J. J. Moyano-Fernández are also partially supported by Universitat Jaume I, Grant UJI-B2018-10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernando, F., McGuire, G., Monserrat, F. et al. Quantum codes from a new construction of self-orthogonal algebraic geometry codes. Quantum Inf Process 19, 117 (2020). https://doi.org/10.1007/s11128-020-2616-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-2616-8

Keywords

Mathematics Subject Classification

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy