Skip to main content
Log in

Quantum dialogue mediated by EPR-type entangled coherent states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Talking with each other on the telephone is convenient but insecure because the conversation content can be eavesdropped perfectly. Quantum dialogue protocols have thus been devised to enable two parties to talk with a reasonable level of security suited to urgent situations without the need of a prior quantum key distribution. Existing protocols use either discrete-variable or continuous-variable entangled states each of which has its own pros and cons. Here we employ Einstein–Podolky–Rosen-type entangled coherent states with fixed and large enough amplitudes which are intermediate between discrete- and continuous-variable states. The outstanding pros is the possibility of unambiguous and efficient identification of a given entangled coherent state which is necessary for the decoding process. Single-mode gates required for the encoding process are executable as well, possibly with the assistance of additional resources. Two types of control methods are introduced to protect the quantum dialogue from outsider’s attacks. The information leakage problem is also discussed showing that it hardly influences the protocol security for a long enough dialogue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Vol. 175, New York, p. 8 (1984). See also Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theoret. Comput. Sci. 560, 7 (2014). https://doi.org/10.1016/j.tcs.2014.05.025

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991). https://doi.org/10.1103/PhysRevLett.67.661

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992). https://doi.org/10.1103/PhysRevLett.68.3121

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 120 (1978). https://doi.org/10.1145/359340.359342

    Article  MathSciNet  MATH  Google Scholar 

  5. Bellovin, S.M.: Frank Miller: inventor of the one-time pad. Cryptologia 35, 203 (2011). https://doi.org/10.1080/01611194.2011.583711

    Article  MATH  Google Scholar 

  6. An, N.B.: Quantum dialogue. Phys. Lett. A 328, 6 (2004). https://doi.org/10.1016/j.physleta.2004.06.009

    Article  MathSciNet  MATH  Google Scholar 

  7. An, N.B.: Secure dialogue without a prior key distribution. J. Kor. Phys. Soc. 47, 562 (2005)

    Google Scholar 

  8. Chang, C.H., Yang, C.W., Hzu, G.R., Hwang, T., Kao, S.H.: Quantum dialogue protocols over collective noise using entanglement of GHZ state. Quantum Inf. Process. 15, 2971 (2016). https://doi.org/10.1007/s11128-016-1309-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Qi, J.M., Xu, G., Chen, X.B., Wang, T.Y., Cai, X.Q., Yang, Y.X.: Two authenticated quantum dialogue protocols based on three-particle entangled states. Quantum Inf. Process. 17, 247 (2018). https://doi.org/10.1007/s11128-018-2005-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Li, W., Zha, X.W., Yu, Y.: Secure quantum dialogue protocol based on four-qubit cluster state. Int. J. Theor. Phys. 57, 371 (2018). https://doi.org/10.1007/s10773-017-3569-2

    Article  MathSciNet  MATH  Google Scholar 

  11. Zha, X.W., Yu, X.Y., Cao, Y., Wang, S.K.: Quantum private comparison protocol with five-particle cluster states. Int. J. Theor. Phys. 57, 3874 (2018). https://doi.org/10.1007/s10773-018-3900-6

    Article  MATH  Google Scholar 

  12. Liu, Z., Chen, H.: Analyzing and improving the secure quantum dialogue protocol based on four-qubit cluster state. Int. J. Theor. Phys. 59, 2120 (2020). https://doi.org/10.1007/s10773-020-04485-2

    Article  MathSciNet  MATH  Google Scholar 

  13. Wang, R.J., Li, D.F., Zhang, F.L., Qin, Z., Baaguere, E., Zhan, H.: Quantum dialogue based on hypertanglement against collective noise. Int. J. Theor. Phys. 55, 3607 (2016). https://doi.org/10.1007/s10773-016-2989-8

    Article  MathSciNet  MATH  Google Scholar 

  14. Zhang, M.H., Cao, Z.W., Peng, J.Y.: Fault-tolerant asymmetric quantum dialogue protocols against collective noise. Quantum Inf. Process. 17, 204 (2018). https://doi.org/10.1007/s11128-018-1966-y

    Article  ADS  MATH  Google Scholar 

  15. Maitra, A.: Measurement device-independent quantum dialogue. Quantum Inf. Process. 16, 305 (2017). https://doi.org/10.1007/s11128-017-1757-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Huang, Z., Situ, H.: Protection of quantum dialogue affected by quantum field. Quantum Inf. Process. 18, 37 (2019). https://doi.org/10.1007/s11128-018-2152-y

    Article  ADS  MATH  Google Scholar 

  17. Chitra, S., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16, 295 (2017). https://doi.org/10.1007/s11128-017-1736-2

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. An, N.B.: Quantum dialogue by nonselective measurements. Adv. Nat. Sci. Nanosci. Nanotechnol. 9, 025001 (2018). https://doi.org/10.1088/2043-6254/aab811

    Article  Google Scholar 

  19. Yu, Z.B., Gong, L.H., Zhu, Q.B., Cheng, S., Zhou, N.R.: Efficient three-party quantum dialogue protocol based on the continuous variable GHZ states. Int. J. Theor. Phys. 55, 3147 (2016). https://doi.org/10.1007/s10773-016-2944-8

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhou, N.R., Li, J.F., Yu, Z.B., Gong, L.H., Farouk, A.: New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states. Quantum Inf. Process. 16, 4 (2017). https://doi.org/10.1007/s11128-016-1461-2

    Article  ADS  MATH  Google Scholar 

  21. Gong, L., Tian, C., Li, J., Zou, X.: Quantum network dialogue protocol based on continuous-variable GHZ states. Quantum Inf. Process. 17, 331 (2018). https://doi.org/10.1007/s11128-018-2103-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Gong, L.H., Li, J.F., Zhou, N.R.: Continuous variable quantum network dialogue protocol based on single-mode squeezed states. Laser Phys. Lett. 15, 105204 (2018). https://doi.org/10.1088/1612-202X/aadaa4

    Article  ADS  Google Scholar 

  23. Zhang, M.H., Cao, Z.W., He, C., Qi, M., Peng, J.Y.: Quantum dialogue protocol with continuous-variable single-mode squeezed states. Quantum Inf. Process. 18, 83 (2019). https://doi.org/10.1007/s11128-019-2188-7

    Article  ADS  MATH  Google Scholar 

  24. Zhang, M.H., Peng, J.Y., Cao, Z.W.: Quantum dialogue protocol with four-mode continuous variable GHZ state. Modern Phys. Lett. B 33, 1950033 (2019). https://doi.org/10.1142/S0217984919500337

    Article  ADS  MathSciNet  Google Scholar 

  25. An, N.B., Kim, K., Kim, J.: Near-deterministic efficient all-optical quantum computation. Phys. Lett. A 375, 245 (2011). https://doi.org/10.1016/j.physleta.2010.11.034

    Article  ADS  MATH  Google Scholar 

  26. Sanders, B.C.: Entangled coherent states. Phys. Rev. A 45, 6811 (1992). https://doi.org/10.1103/PhysRevA.45.6811

  27. Sanders, B.C.: Review of entangled coherent states. J. Phys. A: Math. Theor. 45, 244002 (2012). https://doi.org/10.1088/1751-8113/45/24/244002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Wang, X.: Quantum teleportation of entangled coherent states. Phys. Rev. A 64, 022302 (2001). https://doi.org/10.1103/PhysRevA.64.022302

    Article  ADS  MathSciNet  Google Scholar 

  29. Wang, X.: Bipartite entangled non-orthogonal states. J. Phys. A: Math. Gen. 35, 165 (2002). https://doi.org/10.1088/0305-4470/35/1/313

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. An, N.B.: Teleportation of coherent-state superpositions within a network. Phys. Rev. A 68, 022321 (2003). https://doi.org/10.1103/PhysRevA.68.022321

    Article  ADS  Google Scholar 

  31. An, N.B.: Optimal processing of quantum information via W-type entangled coherent states. Phys. Rev. A 69, 022315 (2004). https://doi.org/10.1103/PhysRevA.69.022315

    Article  ADS  Google Scholar 

  32. Jeong, H., An, N.B.: Greenberger–Horne–Zeilinger-type and W-type entangled coherent states: generation and Bell-type inequality tests without photon counting. Phys. Rev. A 74, 022104 (2006). https://doi.org/10.1103/PhysRevA.74.022104

    Article  ADS  MathSciNet  Google Scholar 

  33. Guo, Y., Kuang, L.M.: Near-deterministic generation of four-mode W-type entangled coherent states. J. Phys. B: At. Mol. Opt. Phys. 40, 3309 (2007). https://doi.org/10.1088/0953-4075/40/16/011

    Article  ADS  Google Scholar 

  34. Guo, Y., Deng, H.L.: Near-deterministic generation of three-mode W-type entangled coherent states in free-travelling optical fields. J. Phys. B: At. Mol. Opt. Phys. 42, 215507 (2009). https://doi.org/10.1088/0953-4075/42/21/215507

    Article  ADS  Google Scholar 

  35. Liu, T., Su, Q.P., Xiong, S.J., Liu, J.M., Yang, C.P., Nori, F.: Generation of a macroscopic entangled coherent state using quantum memories in circuit QED. Sci. Rep. 6, 32004 (2016). https://doi.org/10.1038/srep32004

    Article  ADS  Google Scholar 

  36. Munhoz, P.P., Semiao, F.L., Vidiella-Barranco, A., Roversi, J.A.: Cluster-type entangled coherent states. Phys. Lett. A 372, 3580 (2008). https://doi.org/10.1016/j.physleta.2008.02.009

  37. Becerra-Castro, E.M., Cardoso, W.B., Avelar, A.T., Baseia, B.: Generation of a 4-qubit cluster of entangled coherent states in bimodal QED cavities. J. Phys. B: At. Mol. Opt. Phys. 41, 085505 (2008). https://doi.org/10.1088/0953-4075/41/8/085505

    Article  ADS  Google Scholar 

  38. An, N.B., Kim, J.: Cluster-type entangled coherent states: generation and application. Phys. Rev. A 80, 042316 (2009). https://doi.org/10.1103/PhysRevA.80.042316

    Article  ADS  Google Scholar 

  39. Munhoz, P.P., Roversi, J.A., Vidiella-Barranco, A., Semiao, F.L.: Bipartite quantum channels using multipartite cluster-type entangled coherent states. Phys. Rev. A 81, 042305 (2010). https://doi.org/10.1103/PhysRevA.81.042305

    Article  ADS  Google Scholar 

  40. An, N.B., Kim, J., Kim, K.: Generation of cluster-type entangled coherent states using weak nonlinearities and intense laser beams. Quantum Inf. Comput. 11, 0124 (2011). https://doi.org/10.5555/2011383.2011392

    Article  MathSciNet  MATH  Google Scholar 

  41. Israel, Y., Cohen, L., Song, X.B., Joo, J., Eisenberg, H.S., Silberberg, Y.: Entangled coherent states created by mixing squeezed vacuum and coherent light. Optica 6, 753 (2009). https://doi.org/10.1364/OPTICA.6.000753

    Article  ADS  Google Scholar 

  42. Gerry, C.C., Mimih, J., Benmoussa, A.: Maximally entangled coherent states and strong violations of Bell-type inequalities. Phys. Rev. A 80, 022111 (2009). https://doi.org/10.1103/PhysRevA.80.022111

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. van Enk, S.J., Hirota, O.: Entangled coherent states: teleportation and decoherence. Phys. Rev. A 64, 022313 (2001). https://doi.org/10.1103/PhysRevA.64.022313

    Article  ADS  Google Scholar 

  44. Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 807 (1935). https://doi.org/10.1007/BF01491891

    Article  ADS  MATH  Google Scholar 

  45. Ourjoumtsev, A., Tualle-Brouri, R., Laurat, J., Grangier, P.: Generating optical Schrödinger Kittens for quantum information processing. Science 312, 83 (2006)

    Article  ADS  Google Scholar 

  46. Neergaard-Nielsen, J.S., Melholt Nielsen, B., Hettich, C., Mølmer, K., Polzik, E.S.: Generation of a superposition of odd photon number states for quantum information networks. Phys. Rev. Lett. 97, 083604 (2006). https://doi.org/10.1103/PhysRevLett.97.083604

    Article  ADS  Google Scholar 

  47. Gerrits, T., Glancy, S., Clement, T.S., Calkins, B., Lita, A.E., Miller, A.J., Migdall, A.L., Nam, S.W., Mirin, R.P., Knill, E.: Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum. Phys. Rev. A 82, 031802(R) (2010). https://doi.org/10.1103/PhysRevA.82.031802

    Article  ADS  Google Scholar 

  48. Lund, A.P., Jeong, H., Ralph, T.C., Kim, M.S.: Conditional production of superpositions of coherent states with inefficient photon detection. Phys. Rev. A 70, 020101R (2004). https://doi.org/10.1103/PhysRevA.70.020101

    Article  ADS  Google Scholar 

  49. Sychev, D.V., Ulanov, A.E., Pushkina, A.A., Richards, M.W., Fedorov, I.A., Lvovsky, A.I.: Nat. Photonics 11, 379 (2017). https://doi.org/10.1038/nphoton.2017.57

    Article  ADS  Google Scholar 

  50. Mikheev, E.V., Pugin, A.S., Kuts, D.A., Podoshvedov, S.A., An, N.B.: Efficient production of large-size optical Schrödinger cat states. Sci. Rep. 9, 14301 (2019). https://doi.org/10.1038/s41598-019-50703-1

    Article  ADS  Google Scholar 

  51. Vaidman, L., Yoran, N.: Phys. Rev. A 59, 116 (1999)

    Article  ADS  Google Scholar 

  52. Lütkenhaus, N., Calsamiglia, J., Suominen, K.A.: Bell measurements for teleportation. Phys. Rev. A 59, 3295 (1999). https://doi.org/10.1103/PhysRevA.59.3295

    Article  ADS  MathSciNet  Google Scholar 

  53. Gao, G.: Two quantum dialogue protocols without information leakage. Opt. Commun. 283, 2288 (2010). https://doi.org/10.1016/j.optcom.2010.01.022

    Article  ADS  Google Scholar 

  54. Ye, T.Y.: Large payload bidirectional quantum secure direct communication without information leakage. Int. J. Quantum. Inf. 11, 1350051 (2013). https://doi.org/10.1142/S0219749913500512

    Article  MathSciNet  MATH  Google Scholar 

  55. Zhou, N.R., Wu, G.T., Gong, L.H., Liu, S.Q.: Int. J. Theor. Phys. 52, 3204 (2013). https://doi.org/10.1007/s10773-013-1615-2

    Article  Google Scholar 

  56. Ye, T.Y., Jiang, L.Z.: Quantum dialogue without information leakage based on the entanglement swapping between any two Bell states and the shared secret Bell state. Phys. Scr. 89, 015103 (2014). https://doi.org/10.1088/0031-8949/89/01/015103

    Article  ADS  Google Scholar 

  57. Wang, H., Zhang, Y.Q., Liu, X.F., Hu, Y.P.: Efficient quantum dialogue using entangled states and entanglement swapping without information leakage. Quantum Inf. Process. 15, 2593 (2016). https://doi.org/10.1007/s11128-016-1294-z

    Article  ADS  MathSciNet  MATH  Google Scholar 

  58. Liu, Z.H., Chen, H.W.: Cryptanalysis and improvement of efficient quantum dialogue using entangled states and entanglement swapping without information leakage. Quantum Inf. Process. 16, 229 (2017). https://doi.org/10.1007/s11128-017-1668-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Liu, Z.H., Chen, H.W.: Analyzing and revising quantum dialogue without information leakage based on the entanglement swapping between any two bell states and the shared secret bell state. Int. J. Theor. Phys. 58, 575 (2019). https://doi.org/10.1007/s10773-018-3955-4

    Article  MATH  Google Scholar 

  60. Provazník, J., Lachman, L., Filip, R., Marek, P.: Benchmarking photon number resolving detectors. Opt. Express 28, 14839 (2020). https://doi.org/10.1364/OE.389619

    Article  ADS  Google Scholar 

  61. Young, S.M., Sarovar, M., Léonard, F.: Design of high-performance photon-number-resolving photodetectors based on coherently interacting nanoscale elements. ACS Photonics 7, 821 (2020). https://doi.org/10.1021/acsphotonics.9b01754

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Foundation for Science and Technology Development (NAFOSTED) under Project No. 103.01-2019.313.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nguyen Ba An.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, N.B. Quantum dialogue mediated by EPR-type entangled coherent states. Quantum Inf Process 20, 100 (2021). https://doi.org/10.1007/s11128-021-03007-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-021-03007-1

Keywords

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy