Abstract
Talking with each other on the telephone is convenient but insecure because the conversation content can be eavesdropped perfectly. Quantum dialogue protocols have thus been devised to enable two parties to talk with a reasonable level of security suited to urgent situations without the need of a prior quantum key distribution. Existing protocols use either discrete-variable or continuous-variable entangled states each of which has its own pros and cons. Here we employ Einstein–Podolky–Rosen-type entangled coherent states with fixed and large enough amplitudes which are intermediate between discrete- and continuous-variable states. The outstanding pros is the possibility of unambiguous and efficient identification of a given entangled coherent state which is necessary for the decoding process. Single-mode gates required for the encoding process are executable as well, possibly with the assistance of additional resources. Two types of control methods are introduced to protect the quantum dialogue from outsider’s attacks. The information leakage problem is also discussed showing that it hardly influences the protocol security for a long enough dialogue.








Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, Vol. 175, New York, p. 8 (1984). See also Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theoret. Comput. Sci. 560, 7 (2014). https://doi.org/10.1016/j.tcs.2014.05.025
Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991). https://doi.org/10.1103/PhysRevLett.67.661
Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121 (1992). https://doi.org/10.1103/PhysRevLett.68.3121
Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21, 120 (1978). https://doi.org/10.1145/359340.359342
Bellovin, S.M.: Frank Miller: inventor of the one-time pad. Cryptologia 35, 203 (2011). https://doi.org/10.1080/01611194.2011.583711
An, N.B.: Quantum dialogue. Phys. Lett. A 328, 6 (2004). https://doi.org/10.1016/j.physleta.2004.06.009
An, N.B.: Secure dialogue without a prior key distribution. J. Kor. Phys. Soc. 47, 562 (2005)
Chang, C.H., Yang, C.W., Hzu, G.R., Hwang, T., Kao, S.H.: Quantum dialogue protocols over collective noise using entanglement of GHZ state. Quantum Inf. Process. 15, 2971 (2016). https://doi.org/10.1007/s11128-016-1309-9
Qi, J.M., Xu, G., Chen, X.B., Wang, T.Y., Cai, X.Q., Yang, Y.X.: Two authenticated quantum dialogue protocols based on three-particle entangled states. Quantum Inf. Process. 17, 247 (2018). https://doi.org/10.1007/s11128-018-2005-8
Li, W., Zha, X.W., Yu, Y.: Secure quantum dialogue protocol based on four-qubit cluster state. Int. J. Theor. Phys. 57, 371 (2018). https://doi.org/10.1007/s10773-017-3569-2
Zha, X.W., Yu, X.Y., Cao, Y., Wang, S.K.: Quantum private comparison protocol with five-particle cluster states. Int. J. Theor. Phys. 57, 3874 (2018). https://doi.org/10.1007/s10773-018-3900-6
Liu, Z., Chen, H.: Analyzing and improving the secure quantum dialogue protocol based on four-qubit cluster state. Int. J. Theor. Phys. 59, 2120 (2020). https://doi.org/10.1007/s10773-020-04485-2
Wang, R.J., Li, D.F., Zhang, F.L., Qin, Z., Baaguere, E., Zhan, H.: Quantum dialogue based on hypertanglement against collective noise. Int. J. Theor. Phys. 55, 3607 (2016). https://doi.org/10.1007/s10773-016-2989-8
Zhang, M.H., Cao, Z.W., Peng, J.Y.: Fault-tolerant asymmetric quantum dialogue protocols against collective noise. Quantum Inf. Process. 17, 204 (2018). https://doi.org/10.1007/s11128-018-1966-y
Maitra, A.: Measurement device-independent quantum dialogue. Quantum Inf. Process. 16, 305 (2017). https://doi.org/10.1007/s11128-017-1757-x
Huang, Z., Situ, H.: Protection of quantum dialogue affected by quantum field. Quantum Inf. Process. 18, 37 (2019). https://doi.org/10.1007/s11128-018-2152-y
Chitra, S., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16, 295 (2017). https://doi.org/10.1007/s11128-017-1736-2
An, N.B.: Quantum dialogue by nonselective measurements. Adv. Nat. Sci. Nanosci. Nanotechnol. 9, 025001 (2018). https://doi.org/10.1088/2043-6254/aab811
Yu, Z.B., Gong, L.H., Zhu, Q.B., Cheng, S., Zhou, N.R.: Efficient three-party quantum dialogue protocol based on the continuous variable GHZ states. Int. J. Theor. Phys. 55, 3147 (2016). https://doi.org/10.1007/s10773-016-2944-8
Zhou, N.R., Li, J.F., Yu, Z.B., Gong, L.H., Farouk, A.: New quantum dialogue protocol based on continuous-variable two-mode squeezed vacuum states. Quantum Inf. Process. 16, 4 (2017). https://doi.org/10.1007/s11128-016-1461-2
Gong, L., Tian, C., Li, J., Zou, X.: Quantum network dialogue protocol based on continuous-variable GHZ states. Quantum Inf. Process. 17, 331 (2018). https://doi.org/10.1007/s11128-018-2103-7
Gong, L.H., Li, J.F., Zhou, N.R.: Continuous variable quantum network dialogue protocol based on single-mode squeezed states. Laser Phys. Lett. 15, 105204 (2018). https://doi.org/10.1088/1612-202X/aadaa4
Zhang, M.H., Cao, Z.W., He, C., Qi, M., Peng, J.Y.: Quantum dialogue protocol with continuous-variable single-mode squeezed states. Quantum Inf. Process. 18, 83 (2019). https://doi.org/10.1007/s11128-019-2188-7
Zhang, M.H., Peng, J.Y., Cao, Z.W.: Quantum dialogue protocol with four-mode continuous variable GHZ state. Modern Phys. Lett. B 33, 1950033 (2019). https://doi.org/10.1142/S0217984919500337
An, N.B., Kim, K., Kim, J.: Near-deterministic efficient all-optical quantum computation. Phys. Lett. A 375, 245 (2011). https://doi.org/10.1016/j.physleta.2010.11.034
Sanders, B.C.: Entangled coherent states. Phys. Rev. A 45, 6811 (1992). https://doi.org/10.1103/PhysRevA.45.6811
Sanders, B.C.: Review of entangled coherent states. J. Phys. A: Math. Theor. 45, 244002 (2012). https://doi.org/10.1088/1751-8113/45/24/244002
Wang, X.: Quantum teleportation of entangled coherent states. Phys. Rev. A 64, 022302 (2001). https://doi.org/10.1103/PhysRevA.64.022302
Wang, X.: Bipartite entangled non-orthogonal states. J. Phys. A: Math. Gen. 35, 165 (2002). https://doi.org/10.1088/0305-4470/35/1/313
An, N.B.: Teleportation of coherent-state superpositions within a network. Phys. Rev. A 68, 022321 (2003). https://doi.org/10.1103/PhysRevA.68.022321
An, N.B.: Optimal processing of quantum information via W-type entangled coherent states. Phys. Rev. A 69, 022315 (2004). https://doi.org/10.1103/PhysRevA.69.022315
Jeong, H., An, N.B.: Greenberger–Horne–Zeilinger-type and W-type entangled coherent states: generation and Bell-type inequality tests without photon counting. Phys. Rev. A 74, 022104 (2006). https://doi.org/10.1103/PhysRevA.74.022104
Guo, Y., Kuang, L.M.: Near-deterministic generation of four-mode W-type entangled coherent states. J. Phys. B: At. Mol. Opt. Phys. 40, 3309 (2007). https://doi.org/10.1088/0953-4075/40/16/011
Guo, Y., Deng, H.L.: Near-deterministic generation of three-mode W-type entangled coherent states in free-travelling optical fields. J. Phys. B: At. Mol. Opt. Phys. 42, 215507 (2009). https://doi.org/10.1088/0953-4075/42/21/215507
Liu, T., Su, Q.P., Xiong, S.J., Liu, J.M., Yang, C.P., Nori, F.: Generation of a macroscopic entangled coherent state using quantum memories in circuit QED. Sci. Rep. 6, 32004 (2016). https://doi.org/10.1038/srep32004
Munhoz, P.P., Semiao, F.L., Vidiella-Barranco, A., Roversi, J.A.: Cluster-type entangled coherent states. Phys. Lett. A 372, 3580 (2008). https://doi.org/10.1016/j.physleta.2008.02.009
Becerra-Castro, E.M., Cardoso, W.B., Avelar, A.T., Baseia, B.: Generation of a 4-qubit cluster of entangled coherent states in bimodal QED cavities. J. Phys. B: At. Mol. Opt. Phys. 41, 085505 (2008). https://doi.org/10.1088/0953-4075/41/8/085505
An, N.B., Kim, J.: Cluster-type entangled coherent states: generation and application. Phys. Rev. A 80, 042316 (2009). https://doi.org/10.1103/PhysRevA.80.042316
Munhoz, P.P., Roversi, J.A., Vidiella-Barranco, A., Semiao, F.L.: Bipartite quantum channels using multipartite cluster-type entangled coherent states. Phys. Rev. A 81, 042305 (2010). https://doi.org/10.1103/PhysRevA.81.042305
An, N.B., Kim, J., Kim, K.: Generation of cluster-type entangled coherent states using weak nonlinearities and intense laser beams. Quantum Inf. Comput. 11, 0124 (2011). https://doi.org/10.5555/2011383.2011392
Israel, Y., Cohen, L., Song, X.B., Joo, J., Eisenberg, H.S., Silberberg, Y.: Entangled coherent states created by mixing squeezed vacuum and coherent light. Optica 6, 753 (2009). https://doi.org/10.1364/OPTICA.6.000753
Gerry, C.C., Mimih, J., Benmoussa, A.: Maximally entangled coherent states and strong violations of Bell-type inequalities. Phys. Rev. A 80, 022111 (2009). https://doi.org/10.1103/PhysRevA.80.022111
van Enk, S.J., Hirota, O.: Entangled coherent states: teleportation and decoherence. Phys. Rev. A 64, 022313 (2001). https://doi.org/10.1103/PhysRevA.64.022313
Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 807 (1935). https://doi.org/10.1007/BF01491891
Ourjoumtsev, A., Tualle-Brouri, R., Laurat, J., Grangier, P.: Generating optical Schrödinger Kittens for quantum information processing. Science 312, 83 (2006)
Neergaard-Nielsen, J.S., Melholt Nielsen, B., Hettich, C., Mølmer, K., Polzik, E.S.: Generation of a superposition of odd photon number states for quantum information networks. Phys. Rev. Lett. 97, 083604 (2006). https://doi.org/10.1103/PhysRevLett.97.083604
Gerrits, T., Glancy, S., Clement, T.S., Calkins, B., Lita, A.E., Miller, A.J., Migdall, A.L., Nam, S.W., Mirin, R.P., Knill, E.: Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed vacuum. Phys. Rev. A 82, 031802(R) (2010). https://doi.org/10.1103/PhysRevA.82.031802
Lund, A.P., Jeong, H., Ralph, T.C., Kim, M.S.: Conditional production of superpositions of coherent states with inefficient photon detection. Phys. Rev. A 70, 020101R (2004). https://doi.org/10.1103/PhysRevA.70.020101
Sychev, D.V., Ulanov, A.E., Pushkina, A.A., Richards, M.W., Fedorov, I.A., Lvovsky, A.I.: Nat. Photonics 11, 379 (2017). https://doi.org/10.1038/nphoton.2017.57
Mikheev, E.V., Pugin, A.S., Kuts, D.A., Podoshvedov, S.A., An, N.B.: Efficient production of large-size optical Schrödinger cat states. Sci. Rep. 9, 14301 (2019). https://doi.org/10.1038/s41598-019-50703-1
Vaidman, L., Yoran, N.: Phys. Rev. A 59, 116 (1999)
Lütkenhaus, N., Calsamiglia, J., Suominen, K.A.: Bell measurements for teleportation. Phys. Rev. A 59, 3295 (1999). https://doi.org/10.1103/PhysRevA.59.3295
Gao, G.: Two quantum dialogue protocols without information leakage. Opt. Commun. 283, 2288 (2010). https://doi.org/10.1016/j.optcom.2010.01.022
Ye, T.Y.: Large payload bidirectional quantum secure direct communication without information leakage. Int. J. Quantum. Inf. 11, 1350051 (2013). https://doi.org/10.1142/S0219749913500512
Zhou, N.R., Wu, G.T., Gong, L.H., Liu, S.Q.: Int. J. Theor. Phys. 52, 3204 (2013). https://doi.org/10.1007/s10773-013-1615-2
Ye, T.Y., Jiang, L.Z.: Quantum dialogue without information leakage based on the entanglement swapping between any two Bell states and the shared secret Bell state. Phys. Scr. 89, 015103 (2014). https://doi.org/10.1088/0031-8949/89/01/015103
Wang, H., Zhang, Y.Q., Liu, X.F., Hu, Y.P.: Efficient quantum dialogue using entangled states and entanglement swapping without information leakage. Quantum Inf. Process. 15, 2593 (2016). https://doi.org/10.1007/s11128-016-1294-z
Liu, Z.H., Chen, H.W.: Cryptanalysis and improvement of efficient quantum dialogue using entangled states and entanglement swapping without information leakage. Quantum Inf. Process. 16, 229 (2017). https://doi.org/10.1007/s11128-017-1668-x
Liu, Z.H., Chen, H.W.: Analyzing and revising quantum dialogue without information leakage based on the entanglement swapping between any two bell states and the shared secret bell state. Int. J. Theor. Phys. 58, 575 (2019). https://doi.org/10.1007/s10773-018-3955-4
Provazník, J., Lachman, L., Filip, R., Marek, P.: Benchmarking photon number resolving detectors. Opt. Express 28, 14839 (2020). https://doi.org/10.1364/OE.389619
Young, S.M., Sarovar, M., Léonard, F.: Design of high-performance photon-number-resolving photodetectors based on coherently interacting nanoscale elements. ACS Photonics 7, 821 (2020). https://doi.org/10.1021/acsphotonics.9b01754
Acknowledgements
This work is supported by the National Foundation for Science and Technology Development (NAFOSTED) under Project No. 103.01-2019.313.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
An, N.B. Quantum dialogue mediated by EPR-type entangled coherent states. Quantum Inf Process 20, 100 (2021). https://doi.org/10.1007/s11128-021-03007-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-021-03007-1