Abstract
Grover search algorithm provides a quadratic speedup over all classical algorithms for unstructured data search. The origin of this quantum advantage has been explored and studied from various angles. In this work, we investigate this issue from the perspective of decoherence induced by the quantum channel associated to Grover search algorithm. We establish a complementary relation between coherence and success probability for the generalized Grover search algorithm with the register initialized in arbitrary pure state or pseudo-pure state. We provide an operational illustration of decoherence as success probability for the Grover search algorithm with unital noise and the register initialized in the maximal superposition state, which includes standard Grover search algorithm as a special case. To understand the dynamic of decoherence and its relation with success probability intuitively, we evaluate it for the Grover search algorithm with bit flip noise, phase flip noise, amplitude damping noise, and phase damping noise, and observe that both decoherence and success probability exhibit similar behaviors with the time of iterations.


Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data availability
No datasets were generated or analysed during the current study.
References
Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)
Yu, X.D., Zhang, D.J., Xu, G.F., Tong, D.M.: Alternative framework for quantifying coherence. Phys. Rev. A 94, 060302(R) (2016)
Streltsov, A., Adesso, G., Plenio, M.B.: Quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)
Hu, M.-L., Hu, X., Wang, J., Peng, Y., Zhang, Y.-R., Fan, H.: Quantum coherence and geometric quantum discord. Phys. Rep. 762–764, 1 (2018)
Luo, S., Sun, Y.: Coherence and complementarity in state-channel interaction. Phys. Rev. A 98, 012113 (2018)
Bischof, F., Kampermann, H., Bruß, D.: Resource theory of coherence based on positive-operator-valued measures. Phys. Rev. Lett. 123, 110402 (2019)
Xu, J., Shao, L.H., Fei, S.M.: Coherence measures with respect to general quantum measurements. Phys. Rev. A 102, 012411 (2020)
Bischof, F., Kampermann, H., Bruß, D.: Quantifying coherence with respect to general quantum measurements. Phys. Rev. A 103, 032429 (2021)
Theurer, T., Killoran, N., Egloff, D., Plenio, M.B.: Resource theory of superposition. Phys. Rev. Lett. 119, 230401 (2017)
Das, S., Mukhopadhyay, C., Roy, S.S., Bhattacharya, S., Sen(De), A., Sen, U.: Wave-particle duality employing quantum coherence in superposition with non-orthogonal pointers. J. Phys. A Math. Theor. 53, 115301 (2020)
Torun, G., Şenyaşa, H.T., Yildiz, A.: Resource theory of superposition: state transformations. Phys. Rev. A 103, 032416 (2021)
Ringbauer, M., Bromley, T.R., Cianciaruso, M., Lami, L., Lau, W.Y.S., Adesso, G., White, A.G., Fedrizzi, A., Piani, M.: Certification and quantification of multilevel quantum coherence. Phys. Rev. X 8, 041007 (2018)
Johnston, N., Li, C.-K., Plosker, S., Poon, Y.-T., Regula, B.: Evaluating the robustness of \(k\)-coherence and \(k\)-entanglement. Phys. Rev. A 98, 022328 (2018)
Regula, B., Piani, M., Cianciaruso, M., Bromley, T.R., Streltsov, A., Adesso, G.: Converting multilevel nonclassicality into genuine multipartite entanglement. New J. Phys. 20, 033012 (2018)
Johnston, N., Moein, S., Pereira, R., Plosker, S.: Absolutely \(k\)-incoherent quantum states and spectral inequalities for the factor width of a matrix. Phys. Rev. A 106, 052417 (2022)
Designolle, S., Uola, R., Luoma, K., Brunner, N.: Set coherence: basis-independent quantification of quantum coherence. Phys. Rev. Lett. 126, 220404 (2021)
Ahnefeld, F., Theurer, T., Egloff, D., Matera, J.M., Plenio, M.B.: Coherence as a Resource for Shor’s Algorithm. Phys. Rev. Lett. 129, 120501 (2022)
Anand, N., Pati, A.K.: Coherence and entanglement monogamy in the discrete analogue of analog Grover search. arXiv:1611.04542 (2016)
Shi, H.L., Liu, S.Y., Wang, X.H., Yang, W.L., Yang, Z.Y., Fan, H.: Coherence depletion in the Grover quantum search algorithm. Phys. Rev. A 95, 032307 (2017)
Chin, S.: Coherence number as a discrete quantum resource. Phys. Rev. A 96, 042336 (2017)
Rastegin, A.E.: Degradation of Grover’s search under collective phase flips in queries to the oracle. Front. Phys. 13, 130318 (2018)
Rastegin, A.E.: On the role of dealing with quantum coherence in amplitude amplification. Quant. Inf. Process. 17, 179 (2018)
Pan, M., Qiu, D.: Operator coherence dynamics in Grover’s quantum search algorithm. Phys. Rev. A 100, 012349 (2019)
Liu, Y.C., Shang, J., Zhang, X.: Coherence depletion in quantum algorithms. Entropy 21, 260 (2019)
Pan, M., Situ, H., Zheng, S.: Complementarity between success probability and coherence in Grover search algorithm. Europhys. Lett. 138, 48002 (2022)
Ye, L., Wu, Z., Fei, S.M.: Tsallis relative \(\alpha \) entropy of coherence dynamics in Grover’s search algorithm. Commun. Theor. Phys. 75, 085101 (2023)
Rastegin, A.E., Anzhelika, M.S.: Degeneration of the Grover search algorithm with depolarization in the oracle-box wires. Mod. Phys. Lett. A 38, 2350030 (2023)
Hillery, M.: Coherence as a resource in decision problems: The Deutsch-Jozsa algorithm and a variation. Phys. Rev. A 93, 012111 (2016)
Naseri, M., Kondra, T.V., Goswami, S., Fellous-Asiani, M., Streltsov, A.: Entanglement and coherence in the Bernstein-Vazirani algorithm. Phys. Rev. A 106, 062429 (2022)
Feng, C., Chen, L., Zhao, L.J.: Coherence and entanglement in Grover and Harrow-Hassidim-Lloyd algorithm. Phys. A 626, 129048 (2023)
Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)
Grover, L.K.: Quantum computers can search arbitrarily large databases by a single query. Phys. Rev. Lett. 79, 4709 (1997)
Grover, L.K.: Quantum computers can search rapidly by using almost any transformation. Phys. Rev. Lett. 80, 4329 (1998)
Bennett, C.H., Bernstein, E., Brassard, G., Vazirani, U.: Strengths and weaknesses of quantum computing SIAM. J. Comput. 26, 1510 (1997)
Zalka, C.: Grover’s quantum searching algorithm is optimal. Phys. Rev. A 60, 4 (1999)
Long, G., Li, Y., Zhang, W., Niu, L.: Phase matching in quantum searching. Phys. Lett. A 262, 27 (1999)
Long, G.L., Li, Y.S., Xiao, L., et al.: Phase matching in quantum searching and the improved Grover algorithm. Nucl. Phys. Rev. 21, 114 (2004)
Biham, E., Biham, O., Biron, D., Grassl, M., Lidar, D.A.: Grover’s quantum search algorithm for an arbitrary initial amplitude distribution. Phys. Rev. A 60, 2742 (1999)
Biham, E., Biham, O., Biron, D., Grassl, M., Lidar, D.A., Shapira, D.: Analysis of generalized Grover quantum search algorithms using recursion equations. Phys. Rev. A 63, 012310 (2000)
Biham, E., Kenigsberg, D.: Grover’s quantum search algorithm for an arbitrary initial mixed state. Phys. Rev. A 66, 062301 (2002)
Biham, O., Shapira, D., Shimoni, Y.: Analysis of Grover’s quantum search algorithm as a dynamical system. Phys. Rev. A 68, 022326 (2003)
Shapira, D., Shimoni, Y., Biham, O.: Algebraic analysis of quantum search with pure and mixed states. Phys. Rev. A 71, 042320 (2005)
Yoder, T., Low, G.H., Chuang, I.: Fixed-point quantum search with an optimal number of queries. Phys. Rev. Lett. 113, 210501 (2014)
Tulsi, A.: Faster quantum searching with almost arbitrary operators. Phys. Rev. A 91, 052307 (2015)
Roy, T., Jiang, L., Schuster, D.I.: Deterministic Grover search with a restricted oracle. Phys. Rev. Res. 4, L022013 (2022)
Galindo, A., Martin-Delgado, M.A.: Family of Grover’s quantum searching algorithms. Phys. Rev. A 62, 062303 (2000)
Shapira, D., Mozes, S., Biham, O.: Effect of unitary noise on Grover’s quantum search algorithm. Phys. Rev. A 67, 042301 (2003)
Reitzner, D., Hillery, M.: Grover search under localized dephasing. Phys. Rev. A 99, 012339 (2019)
Mandal, S.P., Ghoshal, A., Srivastava, C., Sen, U.: Invariance of success probability in Grover’s quantum search under local noise with memory. Phys. Rev. A 107, 022427 (2023)
Pablo-Norman, B., Ruiz-Altaba, M.: Noise in Grover’s quantum search algorithm. Phys. Rev. A 61, 012301 (1999)
Long, G.L., Li, Y.S., Zhang, W.L., Tu, C.C.: Dominant gate imperfection in Grover’s quantum search algorithm. Phys. Rev. A 61, 042305 (2000)
Azuma, H.: Decoherence in Grover’s quantum algorithm: perturbative approach. Phys. Rev. A 65, 042311 (2002)
Rastegin, A.E., Shemet, A.M.: Quantum search degeneration under amplitude noise in queries to the oracle. Quant. Inf. Process. 21, 158 (2022)
Pan, M., Xiong, T., Zhen, S.: Performance of Grover’s search algorithm with diagonalizable collective noises. Quant. Inf. Process. 22, 238 (2023)
Shenvi, N., Brown, K.R., Whaley, K.B.: Effects of a random noisy oracle in search algorithm complexity. Phys. Rev. A 68, 052313 (2003)
Gawron, P., Klamka, J., Winiarczyk, R.: Noise effects in the quantum search algorithm from the viewpoint of computational complexity. Int. J. Appl. Math. Comput. Sci. 22, 493 (2012)
Cohn, I., De Oliveira, A.L.F., Buksman, E., De Lacalle, J.G.L.: Grover’s search with local and total depolarizing channel errors: complexity analysis. Int. J. Quantum. Inform. 14, 1650009 (2016)
Gebhart, V., Pezzè, L., Smerzi, A.: Quantifying computational advantage of Grover’s algorithm with the trace speed. Sci. Rep. 11, 1288 (2021)
Pokharel, B., Lidar, D.A.: Demonstration of algorithmic quantum speedup. Phys. Rev. Lett. 130, 210602 (2023)
Fang, Y., Kaszlikowski, D., Chin, C., Tay, K., Kwek, L.C., Oh, C.H.: Entanglement in the Grover search algorithm. Phys. Lett. A 345, 265 (2005)
Shapira, D., Shimoni, Y., Biham, O.: Groverian measure of entanglement for mixed states. Phys. Rev. A 73, 044301 (2006)
Shimoni, Y., Biham, O.: Groverian entanglement measure of pure quantum states with arbitrary partitions. Phys. Rev. A 75, 022308 (2007)
Rungta, P.: The quadratic speedup in Grover’s search algorithm from the entanglement perspective. Phys. Lett. A 373, 2652 (2009)
Cui, J., Fan, H.: Correlations in the Grover search. J. Phys. A Math. Theor. 43, 045305 (2010)
Batle, J., Raymond Ooi, C.H., Farouk, A., Alkhambashi, M.S., Abdalla, S.: Global versus local quantum correlations in the Grover search algorithm. Quant. Inf. Process. 15, 833 (2016)
Matera, J.M., Egloff, D., Killoran, N., Plenio, M.B.: Coherent control of quantum systems as a resource theory. Quantum Sci. Technol. 1, 01LT01 (2016)
Pan, M., Qiu, D., Zheng, S.: Global multipartite entanglement dynamics in Grover’s search algorithm. Quant. Inf. Process. 16, 211 (2017)
Gory, D.G., Fahmy, A.F., Havel, T.F.: Ensemble quantum computing by nuclear magnetic resonance spectroscopy. Proc. Natl. Acad. Sci. USA 94, 1634 (1997)
Acknowledgements
This work was supported by the National Natural Science Foundation of China, Grant No. 12005104.
Author information
Authors and Affiliations
Contributions
Y.S. wrote the main manuscript text and prepared all the figures.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sun, Y. Decoherence in Grover search algorithm. Quantum Inf Process 23, 183 (2024). https://doi.org/10.1007/s11128-024-04399-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11128-024-04399-6