Skip to main content
Log in

Calculation of the high-energy neutron flux for anticipating errors and recovery techniques in exascale supercomputer centres

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

The age of exascale computing has arrived, and the risks associated with neutron and other atmospheric radiation are becoming more critical as the computing power increases; hence, the expected mean time between failures will be reduced because of this radiation. In this work, a new and detailed calculation of the neutron flux for energies above 50 MeV is presented. This has been done by using state-of-the-art Monte Carlo astroparticle techniques and including real atmospheric profiles at each one of the next 23 exascale supercomputing facilities. Atmospheric impact in the flux and seasonal variations were observed and characterized, and the barometric coefficient for high-energy neutrons at each site was obtained. With these coefficients, potential risks of errors associated with the increase in the flux of energetic neutrons, such as the occurrence of single event upsets or transients, and the corresponding failure-in-time rates, can be anticipated just by using the atmospheric pressure before the assignation of resources to critical tasks at each exascale facility. For more clarity, examples about how the rate of failures is affected by the cosmic rays are included, so administrators will better anticipate which more or less restrictive actions could take for overcoming errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated and analysed during the current study are available in the Zenodo repository, 10.5281/zenodo.6721615. The ARTI code is available in the LAGO GitHub repository: github.com/lagoproject/arti.

Notes

  1. It is possible to consider neutron as quasi-stable particles since their lifetime is several orders of magnitude larger than the characteristic time of the cascade evolution.

  2. Data assimilation is the adjustment of the parameters of any specific atmospheric model to the real state of the atmosphere as measured by meteorological observations.

  3. Atmospheric pressure at a certain altitude P(h) can be obtained from the atmospheric profiles by simply integrating the density profile, i.e. \(P(h)=\int _{\infty }^{h} g \rho (h') \text {d}h'\), where g is the acceleration due to gravity.

  4. Since, according to Table 2 for RCSS: \(\beta _0 (P(t)-\overline{P}) = -6.7\times 10^{-3}\text {\ hPa}^{-1} \times (-8)\text {\ hPa} \simeq 6\%\).

  5. \(FIT_{\text {SDC}}=(10^5)(4.7\times 10^4)(4.8\times 10^{-7})[1+(-7.9\times 10^{-3})(979-984)]=2,345\simeq 2,300\) failures in 10\(^9\) device\(\cdot\)hours of operation.

References

  1. Dongarra J, Beckman P, Aerts P, Cappello F, Lippert T, Matsuoka S, Messina P, Moore T, Stevens R, Trefethen A et al (2009) The international exascale software project: a call to cooperative action by the global high-performance community. Int J High Perform Comput Appl 23(4):309–322

    Article  Google Scholar 

  2. Snir M, Wisniewski RW, Abraham JA, Adve SV, Bagchi S, Balaji P, Belak J, Bose P, Cappello F, Carlson B et al (2014) Addressing failures in exascale computing. Int J High Perform Comput Appl 28(2):129–173

    Article  Google Scholar 

  3. Rodríguez-Pascual M, Cao J, Moríñigo JA, Cooperman G, Mayo-García R (2019) Job migration in hpc clusters by means of checkpoint/restart. J Supercomput 75(10):6517–6541

    Article  Google Scholar 

  4. Yeom J-S, Nikolopoulos DS (2010) Strider: runtime support for optimizing strided data accesses on multi-cores with explicitly managed memories. In: SC’10: proceedings of the 2010 ACM/IEEE international conference for high performance computing, networking, storage and analysis, pp. 1–11. IEEE

  5. Gordon MS, Goldhagen P, Rodbell KP, Zabel TH, Tang HHK, Clem JM, Bailey P (2004) Measurement of the flux and energy spectrum of cosmic-ray induced neutrons on the ground. IEEE Trans Nuclear Sci 51:3427–3434. https://doi.org/10.1109/TNS.2004.839134

    Article  Google Scholar 

  6. Oliveira DAGD, Pilla LL, Hanzich M, Fratin V, Fernandes F, Lunardi C, Cela JM, Navaux POA, Carro L, Rech P (2017) Radiation-induced error criticality in modern hpc parallel accelerators, pp. 577–588 https://doi.org/10.1109/HPCA.2017.41

  7. Rojdev K, Koontz S, Reddell B, Atwell W, Boeder P (2015). Comparison and validation of fluka and hzetrn as tools for investigating the secondary neutron production in large space vehicles. https://doi.org/10.2514/6.2015-4601

  8. Dilillo L, Wrobel F, Galliere J-M, Saigne F (2009) Neutron detection through an sram-based test bench, pp. 64–69 https://doi.org/10.1109/IWASI.2009.5184769

  9. Grisales-Casadiegos J, Sarmiento-Cano C, Núñez LA (2022) Impact of global data assimilation system atmospheric models on astroparticle showers. Can J Phys 100(3):152–157

    Article  Google Scholar 

  10. Infantino A, Blackmore EW, Brugger M, Alía RG, Stukel M, Trinczek M (2016) Fluka monte carlo assessment of the terrestrial muon flux at low energies and comparison against experimental measurements. Nucl Instrum Methods Phys Res Sect A 838:109–116. https://doi.org/10.1016/j.nima.2016.09.012

    Article  Google Scholar 

  11. Cappello F, Al G, Gropp W, Kale S, Kramer B, Snir M (2014) Toward exascale resilience: 2014 update. Supercomput Front Innov Int J 1(1):5–28

    Google Scholar 

  12. Gainaru A, Cappello F, Snir M, Kramer W (2013) Failure prediction for hpc systems and applications: current situation and open issues. Int J High Perform Comput Appl 27(3):273–282

    Article  Google Scholar 

  13. Canal R, Hernandez C, Tornero R, Cilardo A, Massari G, Reghenzani F, Fornaciari W, Zapater M, Atienza D, Oleksiak A et al (2020) Predictive reliability and fault management in exascale systems: state of the art and perspectives. ACM Comput Surveys (CSUR) 53(5):1–32

    Article  Google Scholar 

  14. Herault T, Robert Y (2015) Fault-tolerance techniques for high-performance computing. Springer, Switzerland

    Book  MATH  Google Scholar 

  15. Artho C, Suzaki K, Hagiya M, Leungwattanakit W, Potter R, Platon E, Tanabe Y, Weitl F, Yamamoto M (2015) Using checkpointing and virtualization for fault injection. Int J Network Comput 5(2):347–372

    Article  Google Scholar 

  16. Samfass P, Weinzierl T, Reinarz A, Bader M (2021) Doubt and redundancy kill soft errors–towards detection and correction of silent data corruption in task-based numerical software. In: 2021 IEEE/ACM 11th workshop on fault tolerance for HPC at extreme Scale (FTXS), pp. 1–10. IEEE

  17. Rodríguez G, Martín MJ, González P, Tourino J, Doallo R (2010) Cppc: a compiler-assisted tool for portable checkpointing of message-passing applications. Concurr Comput Pract Exp 22(6):749–766

    Article  Google Scholar 

  18. Bosilca G, Bouteiller A, Brunet E, Cappello F, Dongarra J, Guermouche A, Herault T, Robert Y, Vivien F, Zaidouni D (2014) Unified model for assessing checkpointing protocols at extreme-scale. Concurr Comput Pract Exp 26(17):2772–2791

    Article  Google Scholar 

  19. Ferreira K, Stearley J, Laros JH, Oldfield R, Pedretti K, Brightwell R, Riesen R, Bridges PG, Arnold D (2011) Evaluating the viability of process replication reliability for exascale systems. In: Proceedings of 2011 international conference for high performance computing, networking, storage and analysis, pp. 1–12

  20. Yu J, Jian D, Wu Z, Liu H (2011) Thread-level redundancy fault tolerant CMP based on relaxed input replication. In: 2011 6th international conference on computer sciences and convergence information technology (ICCIT), pp. 544–549. IEEE

  21. Fagg GE, Dongarra JJ (2000) Ft-MPI: Fault tolerant MPI, supporting dynamic applications in a dynamic world. In: European parallel virtual machine/message passing interface users’ group meeting, pp. 346–353. Springer

  22. Bland W, Du P, Bouteiller A, Herault T, Bosilca G, Dongarra JJ (2013) Extending the scope of the checkpoint-on-failure protocol for forward recovery in standard mpi. Concurr Comput Pract Exp 25(17):2381–2393

    Article  Google Scholar 

  23. Losada N, González P, Martín MJ, Bosilca G, Bouteiller A, Teranishi K (2020) Fault tolerance of mpi applications in exascale systems: the ulfm solution. Futur Gener Comput Syst 106:467–481

    Article  Google Scholar 

  24. Garg R, Price G, Cooperman G (2019) Mana for mpi: Mpi-agnostic network-agnostic transparent checkpointing. In: Proceedings of the 28th international symposium on high-performance parallel and distributed computing, pp. 49–60

  25. Xu Y, Zhao Z, Garg R, Khetawat H, Hartman-Baker R, Cooperman G (2021) Mana-2.0: A future-proof design for transparent checkpointing of mpi at scale. arXiv preprint arXiv:2112.05858

  26. Egwutuoha IP, Levy D, Selic B, Chen S (2013) A survey of fault tolerance mechanisms and checkpoint/restart implementations for high performance computing systems. J Supercomput 65(3):1302–1326

    Article  Google Scholar 

  27. Fang A, Chien AA (2018) Abfr: convenient management of latent error resilience using application knowledge. In: Proceedings of the 27th international symposium on high-performance parallel and distributed computing, pp. 27–39

  28. Ansel J, Arya K, Cooperman G (2009) Dmtcp: transparent checkpointing for cluster computations and the desktop. In: 2009 IEEE international symposium on parallel & distributed processing, pp. 1–12 (2009). IEEE

  29. Hargrove PH, Duell JC (2006) Berkeley lab checkpoint/restart (blcr) for linux clusters. J Phys Conf Ser 46: 067

  30. Daly JT (2006) A higher order estimate of the optimum checkpoint interval for restart dumps. Futur Gener Comput Syst 22(3):303–312

    Article  Google Scholar 

  31. Aupy G, Benoit A, Cavelan A, Fasi M, Robert Y, Sun H, Uçar B (2017) Coping with silent errors in HPC applications. In: Emergent computation, pp. 269–292. Springer: Cham

  32. Benoit A, Cavelan A, Cappello F, Raghavan P, Robert Y, Sun H (2018) Coping with silent and fail-stop errors at scale by combining replication and checkpointing. J Parallel Distribut Comput 122:209–225

    Article  Google Scholar 

  33. Yeh YC (1996) Triple-triple redundant 777 primary flight computer. In: Proceedings of IEEE aerospace applications conference vol. 1, pp. 293–307 (1996). IEEE

  34. Moríñigo JA, Rodríguez-Pascual M, Mayo-García R (2019) On the modelling of optimal coordinated checkpoint period in supercomputers. J Supercomput 75(2):930–954

    Article  Google Scholar 

  35. Avron H, Maymounkov P, Toledo S (2010) Blendenpik: supercharging lapack’s least-squares solver. SIAM J Sci Comput 32(3):1217–1236

    Article  MathSciNet  MATH  Google Scholar 

  36. Baboulin M, Li XS, Rouet F-H (2014) Using random butterfly transformations to avoid pivoting in sparse direct methods. In: international conference on high performance computing for computational science, pp. 135–144. Springer

  37. Howell GW, Baboulin M (2018) Iterative solution of sparse linear least squares using lu factorization. In: Proceedings of the international conference on high performance computing in Asia-Pacific region, pp. 47–53

  38. Dongarra J, Tomov S, Luszczek P, Kurzak J, Gates M, Yamazaki I, Anzt H, Haidar A, Abdelfattah A (2017) With extreme computing, the rules have changed. Comput Sci Eng 19(3):52–62

    Article  MATH  Google Scholar 

  39. Chetverushkin BN, Yakobovskiy MV, Kornilina MA, Semenova AV (2019) Numerical algorithms for hpc systems and fault tolerance. In: International conference on parallel computational technologies, pp. 34–44. Springer

  40. Moríñigo JA, Bustos A, Mayo-García R (2021) Error resilience of three gmres implementations under fault injection. J Supercomput 1–28

  41. Cavelan A, Ciorba FM (2019) Algorithm-based fault tolerance for parallel stencil computations. In: 2019 IEEE international conference on cluster computing (CLUSTER), pp. 1–11. IEEE

  42. Normand E (1996) Single event upset at ground level. IEEE Trans Nucl Sci 43:2742–2750. https://doi.org/10.1109/23.556861

    Article  Google Scholar 

  43. Ziegler JF, Nelson ME, Shell JD, Peterson RJ, Gelderloos CJ, Muhlfeld HP, Montrose CJ (1998) Cosmic ray soft error rates of 16-mb dram memory chips. IEEE J Solid-State Circuits 33(2):246–252

    Article  Google Scholar 

  44. Michalak S, Harris K, Hengartner N, Takala B, Wender S (2005) Using the lansce irradiation facility to predict the number of fatal soft errors in one of the world’s fastest supercomputers. Nucl Instrum Methods Phys Res, Sect B 241(1–4):414–418

    Article  Google Scholar 

  45. Presti DL, Medina NH, Guazzelli MA, Moralles M, Aguiar VAP, Oliveira JRB, Added N, Macchione ELA, de Tarso D, Siqueira P, Zahn G, Genezini F, Bonanno D, Gallo G, Russo S, Sgouros O, Muoio A, Pandola L, Cappuzzello F (2020) Neutron radiation effects on an electronic system on module. Rev Sci Instrum 91:083301. https://doi.org/10.1063/5.0010968

    Article  Google Scholar 

  46. Han J, Guo G (2017) Characteristics of energy deposition from 1–1000 mev proton and neutron induced nuclear reactions in silicon. AIP Adv 7:115220. https://doi.org/10.1063/1.4995529

    Article  Google Scholar 

  47. Baumann RC (2005) Radiation-induced soft errors in advanced semiconductor technologies. IEEE Trans Device Mater Reliab 5:305–316. https://doi.org/10.1109/TDMR.2005.853449

    Article  Google Scholar 

  48. Baumann RC (2001) Soft errors in advanced semiconductor devices - part i: the three radiation sources. IEEE Trans Device Mater Reliab 1:17–22. https://doi.org/10.1109/7298.946456

    Article  Google Scholar 

  49. Alía RG, Bonaldo S, Brugger M, Danzeca S, Ferrari A, Frost C, Infantino A, Iwamoto Y, Mekki J, Theis C, Thornton A (2018) Single event effect cross section calibration and application to quasi-monoenergetic and spallation facilities. EPJ Nuclear Sci Technol 4:1. https://doi.org/10.1051/epjn/2017031

    Article  Google Scholar 

  50. Tiwari D, Gupta S, Rogers J, Maxwell D, Rech P, Vazhkudai S, Oliveira D, Londo D, DeBardeleben N, Navaux P, Carro L, Bland A (2015) Understanding gpu errors on large-scale hpc systems and the implications for system design and operation, pp. 331–342. https://doi.org/10.1109/HPCA.2015.7056044

  51. Oliveira D, Pilla L, DeBardeleben N, Blanchard S, Quinn H, Koren I, Navaux P, Rech P (2017) Experimental and analytical study of xeon phi reliability, pp. 1–12. https://doi.org/10.1145/3126908.3126960

  52. Oliveira D, dos Santos FF, Davila GP, Cazzaniga C, Frost C, Baumann RC, Rech P (2020) High-energy versus thermal neutron contribution to processor and memory error rates. IEEE Trans Nucl Sci 67:1161–1168. https://doi.org/10.1109/TNS.2020.2970535

    Article  Google Scholar 

  53. Oliveira D, Blanchard S, DeBardeleben N, dos Santos FF, Dávila GP, Navaux P, Favalli A, Schappert O, Wender S, Cazzaniga C, Frost C, Rech P (2021) Thermal neutrons: a possible threat for supercomputer reliability. J Supercomput 77:1612–1634. https://doi.org/10.1007/s11227-020-03324-9

    Article  Google Scholar 

  54. Blümer J, Engel R, Hörandel JR (2009) Cosmic rays from the knee to the highest energies. Prog Part Nucl Phys 63(2):293–338. https://doi.org/10.1016/j.ppnp.2009.05.002

    Article  Google Scholar 

  55. Kampert K-H, Watson AA (2012) Extensive air showers and ultra high-energy cosmic rays: a historical review. Eur Phys J H 37(3):359–412

    Article  Google Scholar 

  56. Grieder PKF (2010). Exentsive air showers and high energy phenomena. https://doi.org/10.1007/978-3-540-76941-5

  57. Abreu P, Aglietta M, Ahn E, Albuquerque IFDM, Allard D, Allekotte I, Allen J, Allison P, Almeda A, Castillo JA, et al (2012) Measurement of the proton-air cross section at \(\sqrt{s}=57\) Tev with the Pierre auger observatory. Phys Rev Lett 109(6):062002

  58. Greisen K (1960) Cosmic ray showers. Annu Rev Nucl Sci 10(1):63–108. https://doi.org/10.1146/annurev.ns.10.120160.000431

    Article  Google Scholar 

  59. Zyla PA, et al. (2020) Review of Particle Physics. PTEP 2020(8), 083–01 (2020). https://doi.org/10.1093/ptep/ptaa104

  60. Matthews J (2005) A heitler model of extensive air showers. Astropart Phys 22(5–6):387–397

    Article  Google Scholar 

  61. Roberts CD, Bhagwat M, Höll A, Wright S (2007) Aspects of hadron physics. Eur Phys J Special Top 140(1):53–116

    Article  Google Scholar 

  62. Capdevielle J (1992) The influence of baryon resonances and vector mesons on cosmic ray cascades. J Phys G Nucl Part Phys 18(2):43

    Article  Google Scholar 

  63. Silberberg R, Tsao C (1990) Spallation processes and nuclear interaction products of cosmic rays. Phys Rep 191(6):351–408

    Article  Google Scholar 

  64. Goldhagen P (2003) Cosmic-ray neutrons on the ground and in the atmosphere. MRS Bull 28(2):131–135

    Article  Google Scholar 

  65. ) Vuković B, Poje M, Varga M, Radolić V, Miklavč ić I, Faj D, Stanić D, Planinić. (2010) Measurements of neutron radiation in aircraft. J Appl Radiat Isotopes 68:2398–2402. https://doi.org/10.1016/j.apradiso.2010.06.017

  66. Clem JM, Angelis GD, Goldhagen P, Wilson JW (2004) New calculations of the atmospheric cosmic radiation field-results for neutron spectra. Radiat Prot Dosimet 110:423–428. https://doi.org/10.1093/rpd/nch175

    Article  Google Scholar 

  67. Erlykin A (2008) The neutron ‘thunder’ accompanying large extensive air showers. Nuclear Phys B Proc Suppl 175:330–333. https://doi.org/10.1016/j.nuclphysbps.2007.11.024

    Article  Google Scholar 

  68. Heck D, Knapp J, Capdevielle JN, Schatz G, Thouw T (1998) CORSIKA: a Monte Carlo code to simulate extensive air showers

  69. Engel R, Heck D, Huege T, Pierog T, Reininghaus M, Riehn F, Ulrich R, Unger M, Veberič D (2019) Towards a next generation of corsika: a framework for the simulation of particle cascades in astroparticle physics. Comput Softw Big Sci 3:2. https://doi.org/10.1007/s41781-018-0013-0

    Article  Google Scholar 

  70. Sidelnik I, Asorey H, Collaboration L et al (2017) Lago: the latin american giant observatory. Nucl Instrum Methods Phys Res Sect A 876:173–175

    Article  Google Scholar 

  71. Sarmiento-Cano C, Suárez-Durán M, Calderón-Ardila R, Vásquez-Ramírez A, Jaimes-Motta A, Núñez LA, Dasso S, Sidelnik I, Asorey H (2022) The arti framework: cosmic rays atmospheric background simulations. Eur Phys J C 82:1019. https://doi.org/10.1140/epjc/s10052-022-10883-z

    Article  Google Scholar 

  72. Asorey H, Sarmiento-Cano C, Suárez-Durán M, Rubio-Montero AJ (2022) The ARTI framework. https://doi.org/10.5281/zenodo.7316555. https://github.com/lagoproject/arti

  73. Sidelnik I (2016) The sites of the latin American giant observatory, p. 665. https://doi.org/10.22323/1.236.0665. https://pos.sissa.it/236/665

  74. Asorey H (2016) Lago: the latin American giant observatory, p. 247 https://doi.org/10.22323/1.236.0247. https://pos.sissa.it/236/247

  75. Durán MS, Asorey H, Dasso S, Nunez LA, Pérez YF, Sarmiento C (2016) The lago space weather program: directional geomagnetic effects, background fluence calculations and multi-spectral data anal, p. 142 https://doi.org/10.22323/1.236.0142. https://pos.sissa.it/236/142

  76. Sarmiento-Cano C, Asorey H, Sacahui J, Otiniano L, Sidelnik I (2021) The latin American giant observatory (lago) capabilities for detecting gamma ray bursts. In: Proceedings of 37th international cosmic ray conference, PoS(ICRC2021), pp. 1–4 (2021). https://doi.org/10.22323/1.395.0929

  77. Asorey H, Núñez LA, Suárez-Durán M (2018) Preliminary results from the latin American giant observatory space weather simulation chain. Space Weather 16:461–475. https://doi.org/10.1002/2017SW001774

    Article  Google Scholar 

  78. Collaboration PA, et al (2020) The Pierre auger observatory and its upgrade. Sci Rev End World 1(4):8–33

  79. Galindo A, Moreno E, Carrasco E, Torres I, Carramiñana A, Bonilla M, Salazar H, Conde R, Alvarez W, Alvarez C et al (2017) Calibration of a large water-Cherenkov detector at the Sierra Negra site of LAGO. Nucl Instrum Methods Phys Res Sect A 861:28–37

    Article  Google Scholar 

  80. Peña-Rodríguez J, Núñez LA, Asorey H (2021) Characterization of the muography background using the muon telescope (mute). In: Proceedings of 40th international conference on high energy physics, PoS (ICHEP2020), pp. 1–4. https://doi.org/10.22323/1.390.0984

  81. Aab A, Abreu P, Aglietta M, Albury JM, Allekotte I, Almela A, Castillo JA, Alvarez-Muñiz J, Batista RA, Anastasi GA et al (2020) Studies on the response of a water-Cherenkov detector of the Pierre Auger observatory to atmospheric muons using an RPC hodoscope. J Instrum 15(09):09002

    Article  Google Scholar 

  82. Sarmiento-Cano C, Suárez-Durán M, Vásquez Ramírez A, Jaimes-Motta A, Calderón-Ardila R, Peña-Rodríguez J (2019) Modeling the lago’s detectors response to secondary particles at ground level from the Antarctic to Mexico. In: Proceedings of 36th international cosmic ray conference PoS(ICRC2019), pp. 1–4. https://doi.org/10.22323/1.358.0412

  83. Rubio-Montero AJ, Pagán-Muñoz R, Mayo-García R, Pardo-Diaz A, Sidelnik I, Asorey H (2021) The eosc-synergy cloud services implementation for the latin American giant observatory (LAGO), p. 261. https://doi.org/10.22323/1.395.0261. https://pos.sissa.it/395/261

  84. Bertolli CP, Sarmiento-Cano C, Asorey H (2022) Estimación del flujo de muones en el laboratorio subterráneo andes. In: ANALES AFA, vol. 32, pp. 106–111

  85. Peña-Rodríguez J, Vesga-Ramírez A, Vásquez-Ramírez A, Suárez-Durán M, de León-Barrios R, Sierra-Porta D, Calderón-Ardila R, Pisco-Guavabe J, Asorey H, Sanabria-Gómez J, et al (2022) Muography in Colombia: simulation framework, instrumentation and data analysis. J Adv Instrum Sci

  86. Taboada A, Sarmiento-Cano C, Sedoski A, Asorey H (2022) Meiga, a dedicated framework used for muography applications. J Adv Instrumen Sci https://doi.org/10.31526/jais.2022.266

  87. Vásquez-Ramírez A, Suárez-Durán M, Jaimes-Motta A, Calderón-Ardila R, Peña-Rodríguez J, Sánchez-Villafrades J, Sanabria-Gómez J, Asorey H, Núñez L (2020) Simulated response of mute, a hybrid muon telescope. J Instrum 15(08):08004

    Article  Google Scholar 

  88. Vesga-Ramírez A, Sanabria-Gómez J, Sierra-Porta D, Arana-Salinas L, Asorey H, Kudryavtsev V, Calderón-Ardila R, Núñez L (2021) Simulated annealing for volcano muography. J South Am Earth Sci 109:103248

    Article  Google Scholar 

  89. Vásquez-Ramírez A, Ariza-Gómez M, Carrillo-Moreno M, Baldovino-Medrano V, Asorey H, Núñez L (2021) Improvised explosive devices and cosmic rays. In: Proceedings of 37th international cosmic ray conference, PoS(ICRC2021), pp. 1–4. https://doi.org/10.22323/1.395.0480

  90. Sidelnik I, Asorey H, Guarín N, Durán MS, Berisso MG, Lipovetzky J, Blostein JJ (2020) Simulation of 500 mev neutrons by using nacl doped water cherenkov detector. Adv Space Res 65(9):2216–2222

    Article  Google Scholar 

  91. Sidelnik I, Asorey H, Guarin N, Durán MS, Lipovetzky J, Arnaldi LH, Pérez M, Haro MS, Berisso MG, Bessia FA et al (2020) Enhancing neutron detection capabilities of a water Cherenkov detector. Nucl Instrum Methods Phys Res Sect A 955:163172

    Article  Google Scholar 

  92. Sidelnik I, Asorey H, Guarin N, Durán MS, Bessia FA, Arnaldi LH, Berisso MG, Lipovetzky J, Pérez M, Haro MS et al (2020) Neutron detection capabilities of water cherenkov detectors. Nucl Instrum Methods Phys Res Sect A 952:161962

    Article  Google Scholar 

  93. Rubio-Montero AJ, Pagan-Munoz R, Mayo-Garcia R, Pardo-Diaz A, Sidelnik I, Asorey H (2021) A novel cloud-based framework for standardized simulations in the latin American giant observatory (LAGO), vol. 2021-December, pp. 1–12. https://doi.org/10.1109/WSC52266.2021.9715360. https://ieeexplore.ieee.org/document/9715360/

  94. Kneizys FX et al (1996) The modtran 2/3 report and lowtran 7 model. Technical report, Phillips Laboratory, Hanscom AFB, MA (USA)

  95. National Aerospace Administration (NASA) (1976) N.O., (NOAA), A.A., Force, U.A.: US standard atmosphere 1976. NOAA technical report NOAA-S/T-76-1562, National Oceanic and Atmospheric Administration

  96. NOAA Air Resources Laboratory (ARL) (2004) Global data assimilation system (GDAS1) archive information. http://ready.arl.noaa.gov/gdas1.php

  97. Alken P, Thébault E, Beggan CD, Amit H, Aubert J, Baerenzung J, Bondar TN, Brown WJ, Califf S, Chambodut A, Chulliat A, Cox GA, Finlay CC, Fournier A, Gillet N, Grayver A, Hammer MD, Holschneider M, Huder L, Hulot G, Jager T, Kloss C, Korte M, Kuang W, Kuvshinov A, Langlais B, Léger J-M, Lesur V, Livermore PW, Lowes FJ, Macmillan S, Magnes W, Mandea M, Marsal S, Matzka J, Metman MC, Minami T, Morschhauser A, Mound JE, Nair M, Nakano S, Olsen N, Pavón-Carrasco FJ, Petrov VG, Ropp G, Rother M, Sabaka TJ, Sanchez S, Saturnino D, Schnepf NR, Shen X, Stolle C, Tangborn A, Tøffner-Clausen L, Toh H, Torta JM, Varner J, Vervelidou F, Vigneron P, Wardinski I, Wicht J, Woods A, Yang Y, Zeren Z, Zhou B (2021) International geomagnetic reference field: the thirteenth generation. Earth Planets Space 73:49. https://doi.org/10.1186/s40623-020-01288-x

    Article  Google Scholar 

  98. Hoerandel JR (2003) On the knee in the energy spectrum of cosmic rays. Astropart Phys 19(2):193–220

    Article  Google Scholar 

  99. Ostapchenko S (2011) Monte Carlo treatment of hadronic interactions in enhanced pomeron scheme: Qgsjet-ii model. Phys Rev D 83:014018. https://doi.org/10.1103/PhysRevD.83.014018

    Article  Google Scholar 

  100. Groom DE, Mokhov NV, Striganov SI (2001) Muon stopping power and range tables 10 mev-100 tev. At Data Nucl Data Tables 78(2):183–356

    Article  Google Scholar 

  101. Bonechi L, D’Alessandro R, Giammanco A (2020) Atmospheric muons as an imaging tool. Rev Phys 5:100038

    Article  Google Scholar 

  102. Sarmiento-Cano C, Asorey H, Bertolli CP (2022) Estimation of the muon flux expected at the andes underground laboratory. Anales de la Asociación de Física Argentina (AFA) 32(4), 106–111 (2022)

  103. Liao W, Hashimoto M, Manabe S, Watanabe Y, Abe S-I, Nakano K, Takeshita H, Tampo M, Takeshita S, Miyake Y (2019) Negative and positive muon-induced SEU cross sections in 28-nm and 65-nm planar bulk cmos srams. In: 2019 IEEE international reliability physics symposium (IRPS), pp. 1–5 (2019). IEEE

  104. Hashimoto M, Liao W (2020) Soft error and its countermeasures in terrestrial environment, vol. 2020-January, pp. 617–622. https://doi.org/10.1109/ASP-DAC47756.2020.9045161

  105. Dasso S, Asorey H (2012) The scaler mode in the Pierre auger observatory to study heliospheric modulation of cosmic rays. Adv Space Res 49(11):1563–1569

    Article  Google Scholar 

  106. Ayre CA, Gustafson HR, Jones LW, Longo MJ, Ramana Murthy PV (1975) Neutron-nucleus total cross section, 30-270 GeV. In: International cosmic ray conference.vol. 7, p. 2268

  107. Abraham J, Abreu P, Aglietta M, Aguirre C, Ahn E, Allard D, Allekotte I, Allen J, Allison P, Alvarez-Muniz J et al (2009) Atmospheric effects on extensive air showers observed with the surface detector of the pierre auger observatory. Astropart Phys 32(2):89–99

    Article  Google Scholar 

  108. Masías-Meza JJ, Dasso S, Démoulin P, Rodriguez L, Janvier M (2016) Superposed epoch study of icme sub-structures near earth and their effects on galactic cosmic rays. Astron Astrophys 592:118

    Article  Google Scholar 

  109. Mishev A, Usoskin I (2020) Current status and possible extension of the global neutron monitor network. J Space Weather Space Clim 10:17

    Article  Google Scholar 

  110. Violante M, Sterpone L, Manuzzato A, Gerardin S, Rech P, Bagatin M, Paccagnella A, Andreani C, Gorini G, Pietropaolo A et al (2007) A new hardware/software platform and a new 1/e neutron source for soft error studies: testing fpgas at the isis facility. IEEE Trans Nucl Sci 54(4):1184–1189

    Article  Google Scholar 

  111. Böhlen T, Cerutti F, Chin M, Fassò A, Ferrari A, Ortega PG, Mairani A, Sala PR, Smirnov G, Vlachoudis V (2014) The fluka code: developments and challenges for high energy and medical applications. Nucl Data Sheets 120:211–214

    Article  Google Scholar 

  112. Agostinelli S, Allison J, Amako K, Apostolakis J, Araujo H, Arce P, Asai M, Axen D, Banerjee S, Barrand G, Behner F, Bellagamba L, Boudreau J, Broglia L, Brunengo A, Burkhardt H, Chauvie S, Chuma J, Chytracek R, Cooperman G, Cosmo G, Degtyarenko P, Dell’Acqua A, Depaola G, Dietrich D, Enami R, Feliciello A, Ferguson C, Fesefeldt H, Folger G, Foppiano F, Forti A, Garelli S, Giani S, Giannitrapani R, Gibin D, Cadenas JJG, González I, Abril GG, Greeniaus G, Greiner W, Grichine V, Grossheim A, Guatelli S, Gumplinger P, Hamatsu R, Hashimoto K, Hasui H, Heikkinen A, Howard A, Ivanchenko V, Johnson A, Jones FW, Kallenbach J, Kanaya N, Kawabata M, Kawabata Y, Kawaguti M, Kelner S, Kent P, Kimura A, Kodama T, Kokoulin R, Kossov M, Kurashige H, Lamanna E, Lampén T, Lara V, Lefebure V, Lei F, Liendl M, Lockman W, Longo F, Magni S, Maire M, Medernach E, Minamimoto K, de Freitas PM, Morita Y, Murakami K, Nagamatu M, Nartallo R, Nieminen P, Nishimura T, Ohtsubo K, Okamura M, O’Neale S, Oohata Y, Paech K, Perl J, Pfeiffer A, Pia MG, Ranjard F, Rybin A, Sadilov S, Salvo ED, Santin G, Sasaki T, Savvas N, Sawada Y, Scherer S, Sei S, Sirotenko V, Smith D, Starkov N, Stoecker H, Sulkimo J, Takahata M, Tanaka S, Tcherniaev E, Tehrani ES, Tropeano M, Truscott P, Uno H, Urban L, Urban P, Verderi M, Walkden A, Wander W, Weber H, Wellisch JP, Wenaus T, Williams DC, Wright D, Yamada T, Yoshida H, Zschiesche D (2003) Geant4-a simulation toolkit. Nucl Instrum Methods Phys Res Sect A 506:250–303. https://doi.org/10.1016/S0168-9002(03)01368-8

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially funded by the co-funded Spanish Ministry of Science and Innovation project CODEC-OSE (RTI2018-096006-B-I00) with European Regional Development Fund (ERDF) funds, by the co-funded European Union Horizon 2020 research and innovation Programme project EOSC-SYNERGY (grant agreement No 857647) and by the co-funded Comunidad de Madrid project CABAHLA-CM (S2018/TCS-4423). Also, this work was partially supported by the computing facilities (Turgalium) of Extremadura Research Centre for Advanced Technologies (CETA-CIEMAT), funded by the ERDF too. The authors are grateful to Antonio Juan Rubio-Montero and Angelines Alberto-Morillas from CIEMAT, Alfonso Pardo-Diaz from CETA/CIEMAT and Iván Sidelnik from CNEA for their continuous support and fruitful discussions. HA thanks Rafael Mayo-García for his warm welcome and continuous support during his stay at CIEMAT in Madrid, Spain.

Funding

This work has been partially funded by the co-funded Spanish Ministry of Science and Innovation project CODEC-OSE (RTI2018-096006-B-I00) with European Regional Development Fund (ERDF) funds, by the co-funded European Union Horizon 2020 research and innovation Programme project EOSC-SYNERGY (grant agreement No 857647) and by the co-funded Comunidad de Madrid project CABAHLA-CM (S2018/TCS-4423).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work and reviewed the manuscript.

Corresponding author

Correspondence to Hernán Asorey.

Ethics declarations

Conflict of interest

Author declares that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

All authors agreed to participate.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asorey, H., Mayo-García, R. Calculation of the high-energy neutron flux for anticipating errors and recovery techniques in exascale supercomputer centres. J Supercomput 79, 8205–8235 (2023). https://doi.org/10.1007/s11227-022-04981-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-022-04981-8

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy