Skip to main content
Log in

A fast convergence EO-based multi-objective optimization algorithm using archive evolution path and its application to engineering design problems

  • Published:
The Journal of Supercomputing Aims and scope Submit manuscript

Abstract

Time-consuming objective functions are inevitable in practical engineering optimization problems. This kind of function makes the implementation of metaheuristic methodologies challenging since the designer must compromise between the quality of the final solution and the overall runtime of the optimization procedure. This paper proposes a novel multi-objective optimization algorithm called FC-MOEO/AEP appropriate for highly time-consuming objective functions. It is based on an equilibrium optimizer equipped with an archive evolution path (AEP) mechanism. The AEP mechanism considers the evolutionary trajectory of the decision space and anticipates the potential regions for optimal solutions. Besides having a high convergence rate, the newly proposed approach also possesses an intelligent balance between exploration and exploitation capabilities, enabling the algorithm to effectively avoid getting stuck in the local Pareto. To assess the efficacy of the FC-MOEO/AEP, a range of mathematical optimization problems and three real-world structural design problems were employed. In order to gauge the method's performance against other approaches, a novel performance indicator known as convergence speed was introduced and utilized, in addition to standard metrics. The numerical findings demonstrate the robust and consistent performance of the FC-MOEO/AEP in tackling complex multi-objective problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Stewart T, Bandte O, Chakraborti N et al (2008) Real-world applications of multiobjective optimization. In: Branke J et al (eds) Multiobjective optimization: interactive and evolutionary approaches. Springer, Berlin, pp 285–327. https://doi.org/10.1007/978-3-540-88908-3

    Chapter  Google Scholar 

  2. Ivanov SY, Ray AK (2016) Application of multi-objective optimization in the design and operation of industrial catalytic reactors and processes. Phys Sci Rev. https://doi.org/10.1515/psr-2015-0017

    Article  Google Scholar 

  3. Abitha R, Vennila SM, Zaheer IM (2022) Evolutionary multi-objective optimization of artificial neural network for classification of autism spectrum disorder screening. J Supercomput 78:11640–11656. https://doi.org/10.1007/s11227-021-04268-4

    Article  Google Scholar 

  4. Cao L, Liu Y (2022) Optimization design and research of simulation system for urban green ecological rainwater by genetic algorithm. J Supercomput 78:11318–11344. https://doi.org/10.1007/s11227-021-04192-7

    Article  Google Scholar 

  5. Li S, Chen H, Wang M, Heidari A, Mirjalili S (2020) Slime mould algorithm: a new method for stochastic optimization. Future Gener Comput Syst 111:300–323. https://doi.org/10.1016/j.future.2020.03.055

    Article  Google Scholar 

  6. Yang Y, Chen H, Heidari A, Gandomi A (2021) Hunger games search: visions, conception, implementation, deep analysis, perspectives, and towards performance shifts. Expert Syst Appl 177:114864. https://doi.org/10.1016/j.eswa.2021.114864

    Article  Google Scholar 

  7. Ahmadianfar I, Heidari A, Noshadian S, Chen H, Gandomi A (2022) INFO: an efficient optimization algorithm based on weighted mean of vectors. Expert Syst Appl 195:116516. https://doi.org/10.1016/j.eswa.2022.116516

    Article  Google Scholar 

  8. Mirjalili S, Dong JS (2020) Multi-objective optimization using artificial intelligence techniques. Springer, Cham. https://doi.org/10.1007/978-3-030-24835-2

    Book  Google Scholar 

  9. Das I, Dennis JE (1998) Normal-boundary intersection: a new method for generating the pareto surface in nonlinear multicriteria optimization problems. SIOPT 8:631–657. https://doi.org/10.1137/S1052623496307510

    Article  MathSciNet  MATH  Google Scholar 

  10. Kim IY, de Weck OL (2005) Adaptive weighted-sum method for bi-objective optimization: Pareto front generation. Struct Multidiscipl Optim 29:149–158. https://doi.org/10.1007/s00158-004-0465-1

    Article  Google Scholar 

  11. Messac A, Mattson CA (2002) Generating well-distributed sets of Pareto points for engineering design using physical programming. Optim Eng 3:431–450. https://doi.org/10.1023/A:1021179727569

    Article  MATH  Google Scholar 

  12. Meignan D, Knust S, Frayret JM et al (2015) A review and taxonomy of interactive optimization methods in operations research. ACM Trans Interact Intell Syst 5:1–43. https://doi.org/10.1145/2808234

    Article  Google Scholar 

  13. Deb K, Pratap A, Agarwal S et al (2002) A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evol Comput 6:182–197. https://doi.org/10.1109/4235.996017

    Article  Google Scholar 

  14. Mirjalili S, Gandomi AH, Mirjalili SZ et al (2017) Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv Eng Softw 114:163–191. https://doi.org/10.1016/j.advengsoft.2017.07.002

    Article  Google Scholar 

  15. Wei Q, Huang D, Zhang Y (2021) Artificial chicken swarm algorithm for multi-objective optimization with deep learning. J Supercomput 77:13069–13089. https://doi.org/10.1007/s11227-021-03770-z

    Article  Google Scholar 

  16. Akbari R, Hedayatzadeh R, Ziarati K, Hassanizadeh B (2012) A multi-objective artificial bee colony algorithm. Swarm Evol Comput. https://doi.org/10.1016/j.swevo.2011.08.001

    Article  Google Scholar 

  17. Zhang Q, Li H (2007) MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput. https://doi.org/10.1109/TEVC.2007.892759

    Article  Google Scholar 

  18. Zitzler E, Kunzli E (2004) Indicator-based selection in multiobjective search. In: Yao X et al (eds) Parallel problem solving from nature. Springer, Berlin, pp 832–842. https://doi.org/10.1007/978-3-540-30217-9_84

    Chapter  Google Scholar 

  19. Tian Y, Cheng R, Zhang X et al (2018) An indicator-based multiobjective evolutionary algorithm with reference point adaptation for better versatility. IEEE Trans Evol Comput. https://doi.org/10.1109/TEVC.2017.2749619

    Article  Google Scholar 

  20. Bader J, Zitzler E (2011) HypE: an algorithm for fast hypervolume-based many-objective optimization. Evol Comput. https://doi.org/10.1162/EVCOa00009

    Article  Google Scholar 

  21. Das S, Suganthan PN (2010) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput. https://doi.org/10.1109/TEVC.2010.2059031

    Article  Google Scholar 

  22. Chiang TC, Lai YP (2011) MOEA/D-AMS: improving MOEA/D by an adaptive mating selection mechanism. IEEE Trans Evol Comput (CEC). https://doi.org/10.1109/CEC.2011.5949789

    Article  Google Scholar 

  23. Abdel-Basset M, Mohamed R, Abouhawwash M (2021) Balanced multi-objective optimization algorithm using improvement based reference points approach. Swarm Evol Comput. https://doi.org/10.1016/j.swevo.2020.100791

    Article  Google Scholar 

  24. Kaveh A, Mahdavi VR (2018) Multi-objective colliding bodies optimization algorithm for design of trusses. J Comput Des Eng. https://doi.org/10.1016/j.jcde.2018.04.001

    Article  Google Scholar 

  25. Kaveh A, Ilchi Ghazaan M (2020) A new VPS-based algorithm for multi-objective optimization problems. Eng Comput. https://doi.org/10.1007/s00366-019-00747-8

    Article  MATH  Google Scholar 

  26. Liu L, Huo J (2018) Apple image recognition multi-objective method based on the adaptive harmony search algorithm with simulation and creation. Information. https://doi.org/10.3390/info9070180

    Article  Google Scholar 

  27. Kaveh A, Ghazaan MI (2018) Meta-heuristic algorithms for optimal design of real-size structures. Springer, Cham

    Book  MATH  Google Scholar 

  28. Amini F, Ghaderi P (2013) Hybridization of harmony search and ant colony optimization for optimal locating of structural dampers. Appl Soft Comput. https://doi.org/10.1016/j.asoc.2013.02.001

    Article  Google Scholar 

  29. Zheng Y, Zhang L, Pan Y, He Z (2020) Multi-objective structural optimization of a wind turbine tower. J Shanghai Jiaotong Univ Sci. https://doi.org/10.1007/s12204-020-2190-3

    Article  Google Scholar 

  30. Alkayem NF, Cao M, Zhang Y et al (2018) Structural damage detection using finite element model updating with evolutionary algorithms: a survey. Neural Comput Appl. https://doi.org/10.1007/s00521-017-3284-1

    Article  Google Scholar 

  31. Gentils T, Wang L, Kolios A (2017) Integrated structural optimisation of offshore wind turbine support structures based on finite element analysis and genetic algorithm. Appl Energy. https://doi.org/10.1016/j.apenergy.2017.05.009

    Article  Google Scholar 

  32. Igel C, Hansen N, Roth S (2007) Covariance matrix adaptation for multi-objective optimization. Evol Comput. https://doi.org/10.1162/evco.2007.15.1.1

    Article  Google Scholar 

  33. He X, Zhou Y, Chen Z (2019) An evolution path-based reproduction operator for many-objective optimization. IEEE Trans Evol Comput. https://doi.org/10.1109/TEVC.2017.2785224

    Article  Google Scholar 

  34. Song W, Du W, Fan C et al (2020) A novel path-based reproduction operator for multi-objective optimization. Swarm Evol Comput. https://doi.org/10.1016/j.swevo.2020.100741

    Article  Google Scholar 

  35. Faramarzi A, Heidarinejad M, Stephens B et al (2020) Equilibrium optimizer: a novel optimization algorithm. Knowl Based Syst. https://doi.org/10.1016/j.knosys.2019.105190

    Article  Google Scholar 

  36. Menchaca-Mendez A, Coello CAC (2016) Selection mechanisms based on the maximin fitness function to solve multi-objective optimization problems. Inf Sci. https://doi.org/10.1016/j.ins.2015.11.008

    Article  Google Scholar 

  37. Li X (2004) Better spread and convergence: particle swarm multiobjective optimization using the maximin fitness function. In: Deb K (ed) Genetic and evolutionary computation. Springer, Berlin, pp 117–128

    Google Scholar 

  38. Martí L, Garcia J, Berlanga A et al (2016) A stopping criterion for multi-objective optimization evolutionary algorithms. Inf Sci. https://doi.org/10.1016/j.ins.2016.07.025

    Article  MATH  Google Scholar 

  39. Deb K, Jain H (2013) An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part I: solving problems with box constraints. IEEE Trans Evol Comput. https://doi.org/10.1109/TEVC.2013.2281535

    Article  Google Scholar 

  40. Premkumar M, Jangir P, Sowmya R et al (2021) MOSMA: multi-objective slime mould algorithm based on elitist non-dominated sorting. IEEE Access. https://doi.org/10.1109/ACCESS.2020.3047936

    Article  Google Scholar 

  41. Mirjalili S, Jangir P, Mirjalili SZ et al (2017) Optimization of problems with multiple objectives using the multi-verse optimization algorithm. Knowl Based Syst. https://doi.org/10.1016/j.knosys.2017.07.018

    Article  Google Scholar 

  42. Van Veldhuizen DA, Lamont GB (1998) Multiobjective evolutionary algorithm research: a history and analysis. University Park, Citeseer

    Google Scholar 

  43. Sierra MR, Coello Coello CA (2005) Improving PSO-based multi-objective optimization using crowding, mutation and ∈-dominance. In: Coello Coello CA et al (eds) Evolutionary multi-criterion optimization. Springer, Berlin, pp 505–519

    Chapter  MATH  Google Scholar 

  44. Coello CAC, Pulido GT, Lechuga MS (2004) Handling multiple objectives with particle swarm optimization. IEEE Trans Evol Comput. https://doi.org/10.1109/TEVC.2004.826067

    Article  Google Scholar 

  45. Zitzler E, Deb K, Thiele L (2000) Comparison of multiobjective evolutionary algorithms: empirical results. Evol Comput. https://doi.org/10.1162/106365600568202

    Article  Google Scholar 

  46. Zitzler E, Thiele L (1999) Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans Evol Comput. https://doi.org/10.1109/4235.797969

    Article  Google Scholar 

  47. Liang JJ, Qu BY, Gong DW et al (2019) Problem definitions and evaluation criteria for the CEC 2019 special session on multimodal multiobjective optimization. In: 2019 IEEE congress on evolutionary computation

  48. Zhang Q, Zhou A, Zhao S et al (2008) Multiobjective optimization test instances for the CEC 2009 special session and competition. University of Essex, Nanyang Technological University, Colchester

    Google Scholar 

  49. Deb K, Thiele L, Laumanns et al (2002) Scalable multi-objective optimization test problems. 2002 IEEE congress on evolutionary computation

  50. Ravber M, Mernik M, Črepinšek M (2017) Ranking multi-objective evolutionary algorithms using a chess rating system with quality indicator ensemble. 2017 IEEE congress on evolutionary computation

  51. Glickman ME (2013) Example of the Glicko-2 system. BU

  52. Veček N, Mernik M, Črepinšek M (2014) A chess rating system for evolutionary algorithms: a new method for the comparison and ranking of evolutionary algorithms. Inf Sci. https://doi.org/10.1016/j.ins.2014.02.154

    Article  MathSciNet  Google Scholar 

  53. AISC (2001) Specifcation for structural steel buildings. American Institute of Steel Construction, Chicago

    Google Scholar 

Download references

Funding

No funds, grants, or other support was received.

Author information

Authors and Affiliations

Authors

Contributions

MIG: Conceptualization, Supervision, Writing—Review and Editing PG: Conceptualization, Supervision, Writing—Review and Editing AR: Software, Formal analysis, Validation, Writing—Original Draft.

Corresponding author

Correspondence to Majid Ilchi Ghazaan.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilchi Ghazaan, M., Ghaderi, P. & Rezaeizadeh, A. A fast convergence EO-based multi-objective optimization algorithm using archive evolution path and its application to engineering design problems. J Supercomput 79, 18849–18885 (2023). https://doi.org/10.1007/s11227-023-05362-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11227-023-05362-5

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy