Abstract
Due to their impressive advantages, Radio Frequency IDentification (RFID) systems are ubiquitously found in various novel applications. These applications are usually in need of quick and accurate authentication or identification. In many cases, it has been shown that if such systems are not properly designed, an adversary can cause security and privacy concerns for end-users. In order to deal with these concerns, impressive endeavors have been made which have resulted in various RFID authentications being proposed. In this study, we analyze three lightweight RFID authentication protocols proposed in Wireless Personal Communications (2014), Computers & Security (2015) and Wireless Networks (2016). We show that none of the studied protocols provides the desired security and privacy required by the end-users. We present various security and privacy attacks such as secret parameter reveal, impersonation, DoS, traceability, and forward traceability against the studied protocols. Our attacks are mounted in the Ouafi–Phan RFID formal privacy model which is a modified version of well-known Juels–Weis privacy model.






Similar content being viewed by others
References
Xie, W., Xie, L., Zhang, C., Wang, Q., Xu, J., Zhang, Q., et al. (2014). RFID seeking: Finding a lost tag rather than only detecting its missing. Journal of Network and Computer Applications, 42, 135–142.
Tajima, M. (2007). Strategic value of RFID in supply chain management. Journal of purchasing and supply management, 13(4), 261–273.
Van Deursen, N., Buchanan, W. J., & Duff, A. (2013). Monitoring information security risks within health care. Computers & Security, 37, 31–45.
Gross, H., Wenger, E., Martín, H., & Hutter, M. (2014). Pioneera prototype for the internet of things based on an extendable EPC gen2 RFID tag. In International Workshop on Radio Frequency Identification: Security and Privacy Issues (pp. 54–73). Springer.
Galins, A., Beinarovics, P., Laizans, A., & Jakusenoks, A., et al. (2016). RFID application for electric car identification at charging station. In Engineering for Rural Development: Proceedings of the 15th International scientific conference (pp. 25–27).
Farash, M. S., Turkanović, M., Kumari, S., & Hölbl, M. (2016). An efficient user authentication and key agreement scheme for heterogeneous wireless sensor network tailored for the internet of things environment. Ad Hoc Networks, 36, 152–176.
Baghery, K., Abdolmaleki, B., Akhbari, B., & Aref, M. R. (2016). Enhancing privacy of recent authentication schemes for low-cost RFID systems. The ISC International Journal of Information Security, 7(2), 135–149.
Suh, W. S., Yoon, E. J., & Piramuthu, S. (2013). RFID-based attack scenarios in retailing, healthcare and sports. Journal of Information Privacy and Security, 9(3), 4–17.
Jannati, H. (2015). Analysis of relay, terrorist fraud and distance fraud attacks on RFID systems. International Journal of Critical Infrastructure Protection, 11, 51–61.
Amendola, S., Lodato, R., Manzari, S., Occhiuzzi, C., & Marrocco, G. (2014). RFID technology for iot-based personal healthcare in smart spaces. IEEE Internet of Things Journal, 1(2), 144–152.
Khoo, B. (2011). RFID as an enabler of the internet of things: Issues of security and privacy. In: Internet of Things (iThings/CPSCom), 2011 international conference on and 4th international conference on cyber, physical and social computing (pp. 709–712). IEEE.
Bolic, M., Rostamian, M., & Djuric, P. M. (2015). Proximity detection with RFID: A step toward the internet of things. IEEE Pervasive Computing, 14(2), 70–76.
Memon, I., Arain, Q. A., Memon, H., & Mangi, F. A. (2017). Efficient user based authentication protocol for location based services discovery over road networks. Wireless Personal Communications, 95(4), 3713–3732.
Memon, I., Hussain, I., Akhtar, R., & Chen, G. (2015). Enhanced privacy and authentication: An efficient and secure anonymous communication for location based service using asymmetric cryptography scheme. Wireless Personal Communications, 84(2), 1487–1508.
Da Xu, L., He, W., & Li, S. (2014). Internet of things in industries: A survey. IEEE Transactions on Industrial Informatics, 10(4), 2233–2243.
Welbourne, E., Battle, L., Cole, G., Gould, K., Rector, K., Raymer, S., et al. (2009). Building the internet of things using RFID: The RFID ecosystem experience. IEEE Internet Computing, 13(3), 48–55.
Shifeng, Y., Chungui, F., Yuanyuan, H., & Shiping, Z. (2011). Application of IoT in agriculture. Journal of Agricultural Mechanization Research, 7, 190–193.
Wang, J., Ni, D., & Li, K. (2014). RFID-based vehicle positioning and its applications in connected vehicles. Sensors, 14(3), 4225–4238.
Hayajneh, T., Mohd, B. J., Imran, M., Almashaqbeh, G., & Vasilakos, A. V. (2016). Secure authentication for remote patient monitoring with wireless medical sensor networks. Sensors, 16(4), 424.
Sun, D.-Z., & Zhong, J.-D. (2012). A hash-based RFID security protocol for strong privacy protection. IEEE Transactions on Consumer Electronics, 58(4), 1246–1252.
Safkhani, M., Bagheri, N., & Naderi, M. (2012). On the designing of a tamper resistant prescription RFID access control system. Journal of medical systems, 36(6), 3995–4004.
Cho, J.-S., Jeong, Y.-S., & Park, S. O. (2015). Consideration on the brute-force attack cost and retrieval cost: A hash-based radio-frequency identification (RFID) tag mutual authentication protocol. Computers & Mathematics with Applications, 69(1), 58–65.
Farash, M. S. (2014). Cryptanalysis and improvement of an efficient mutual authentication RFID scheme based on elliptic curve cryptography. The Journal of Supercomputing, 70(2), 987–1001.
Chen, C.-L., & Deng, Y.-Y. (2009). Conformation of EPC class 1 generation 2 standards RFID system with mutual authentication and privacy protection. Engineering Applications of Artificial Intelligence, 22(8), 1284–1291.
Gope, P., & Hwang, T. (2015). A realistic lightweight authentication protocol preserving strong anonymity for securing RFID system. Computers & Security, 55, 271–280.
Niu, B., Zhu, X., Chi, H., & Li, H. (2014). Privacy and authentication protocol for mobile RFID systems. Wireless Personal Communications, 77(3), 1713–1731.
Luo, H., Wen, G., Su, J., & Huang, Z. (2016). SLAP: Succinct and lightweight authentication protocol for low-cost RFID system. Wireless Networks, 24, 1–10.
He, D., & Zeadally, S. (2015). An analysis of RFID authentication schemes for internet of things in healthcare environment using elliptic curve cryptography. IEEE Internet of Things Journal, 2(1), 72–83.
Abdolmaleki, B., Baghery, K., Khazaei, S., & Aref, M. R. (2017). Game-based privacy analysis of RFID security schemes for confident authentication in IoT. Wireless Personal Communications, 95(4), 5057–5080.
Alavi, S. M., Baghery, K., Abdolmaleki, B., & Aref, M. R. (2015). Traceability analysis of recent RFID authentication protocols. Wireless Personal Communications, 83(3), 1663–1682.
Akgün, M., Bayrak, A. O., & Çaglayan, M. U. (2015). Attacks and improvements to chaotic map-based RFID authentication protocol. Security and Communication Networks, 8(18), 4028–4040.
Abdolmaleki, B., Baghery, K., Akhbari, B., Alavi, S. M., & Aref, M. R. (2016). Securing key exchange and key agreement security schemes for rfid passive tags. In Electrical Engineering (ICEE), 2016 24th Iranian Conference on, (pp. 1475–1480). IEEE.
Moradi, F., Mala, H., Ladani, B. T., & Moradi, F. (2018). Security analysis of an epc class-1 generation-2 compliant rfid authentication protocol. Journal of Computing and Security, 3(3).
Hopper, N. J., & Blum, M. (2001). Secure human identification protocols. In International conference on the theory and application of cryptology and information security (pp. 52–66). Springer.
Juels, A., & Weis, S. A. (2005). Authenticating pervasive devices with human protocols. In Annual international cryptology conference (pp. 293–308). Springer.
Bringer, J., Chabanne, H., & Dottax, E. (2006). Hb\(^{\wedge } +^{\wedge }+\): A lightweight authentication protocol secure against some attacks. In Second international workshop on security, privacy and trust in pervasive and ubiquitous computing (SecPerU’06) (pp. 28–33). IEEE.
Piramuthu, S. (2006). Hb and related lightweight authentication protocols for secure RFID tag/reader authentication title. CollECTeR Europe, 2006, 239.
Peris-Lopez, P., Hernandez-Castro, J. C., Estévez-Tapiador, J. M., & Ribagorda, A. (2006). Lmap: A real lightweight mutual authentication protocol for low-cost RFID tags. In Workshop on RFID security (pp. 12–14).
Peris-Lopez, P., Hernandez-Castro, J. C., Estevez-Tapiador, J. M., & Ribagorda, A. (2006). M2ap: A minimalist mutual-authentication protocol for low-cost RFID tags. In International conference on ubiquitous intelligence and computing, (pp. 912–923). Springer.
Peris-Lopez, P., Hernandez-Castro, J. C., Estevez-Tapiador, J. M., & Ribagorda, A. (2006). Emap: An efficient mutual-authentication protocol for low-cost RFID tags. In: OTM Confederated International Conferences ”On the Move to Meaningful Internet Systems” (pp. 352–361). Springer.
Li, T., & Wang, G. (2007). Security analysis of two ultra-lightweight RFID authentication protocols. In IFIP international information security conference (pp. 109–120). Springer.
Li, T., & Deng, R. (2007). Vulnerability analysis of emap-an efficient RFID mutual authentication protocol. In Availability, reliability and security, 2007. ARES 2007. The second international conference on IEEE (pp. 238–245).
Chien, H.-Y. (2007). Sasi: A new ultralightweight RFID authentication protocol providing strong authentication and strong integrity. IEEE Transactions on Dependable and Secure Computing, 4(4), 337–340.
Phan, R. C. (2009). Cryptanalysis of a new ultralightweight RFID authentication protocol-sasi. IEEE Transactions on Dependable and Secure Computing, 6(4), 316.
Avoine, G., Carpent, X., & Martin, B. (2010). Strong authentication and strong integrity (sasi) is not that strong. In International workshop on radio frequency identification: security and privacy issues (pp. 50–64). Springer.
Avoine, G., Carpent, X., & Martin, B. (2012). Privacy-friendly synchronized ultralightweight authentication protocols in the storm. Journal of Network and Computer Applications, 35(2), 826–843.
Duc, D. N., Lee, H., & Kim, K. (2006). Enhancing security of epcglobal Gen-2 RFID against traceability and cloning. Auto-ID Labs Information and Communication University, White Paper.
Karthikeyan, S., & Nesterenko, M. (2005). RFID security without extensive cryptography. In: Proceedings of the 3rd ACM workshop on security of ad hoc and sensor networks (pp. 63–67). ACM.
Chien, H.-Y., & Chen, C.-H. (2007). Mutual authentication protocol for RFID conforming to EPC class 1 generation 2 standards. Computer Standards & Interfaces, 29(2), 254–259.
Yoon, E.-J. (2012). Improvement of the securing RFID systems conforming to EPC class 1 generation 2 standard. Expert Systems with Applications, 39(1), 1589–1594.
Ha, J., Moon, S., Zhou, J., & Ha, J. (2008). A new formal proof model for RFID location privacy. In European symposium on research in computer security (pp. 267–281). Springer.
Jung, S. W., & Jung, S. (2013). Hmac-based RFID authentication protocol with minimal retrieval at server. In The fifth international conference on evolving internet (pp. 52–55).
Chen, Y.-Y., Huang, D.-C., Tsai, M.-L., & Jan, J.-K. (2012). A design of tamper resistant prescription RFID access control system. Journal of medical systems, 36(5), 2795–2801.
Liu, B.-H., Nguyen, N.-T., Pham, V.-T., & Yeh, Y.-H. (2016). A maximum-weight-independent-set-based algorithm for reader-coverage collision avoidance arrangement in rfid networks. IEEE Sensors Journal, 16(5), 1342–1350.
Rahman, F., Hoque, M. E., & Ahamed, S. I. (2017). Anonpri: A secure anonymous private authentication protocol for rfid systems. Information Sciences, 379, 195–210.
Rahman, F., Bhuiyan, M. Z. A., & Ahamed, S. I. (2017). A privacy preserving framework for rfid based healthcare systems. Future Generation Computer Systems, 72, 339–352.
Nguyen, N.-T., Liu, B.-H., & Pham, V.-T. (2016). A dynamic-range-based algorithm for reader-tag collision avoidance deployment in rfid networks. In Electronics, information, and communications (ICEIC), 2016 international conference on IEEE (pp. 1–4).
Mohd, B. J., Hayajneh, T., Khalaf, Z. A., Yousef, A., & Mustafa, K. (2016). Modeling and optimization of the lightweight hight block cipher design with fpga implementation. Security and Communication Networks, 9(13), 2200–2216.
Mohd, B. J., Hayajneh, T., & Vasilakos, A. V. (2015). A survey on lightweight block ciphers for low-resource devices: Comparative study and open issues. Journal of Network and Computer Applications, 58, 73–93.
Ouafi, K., & Phan, R.C.-W. (2008). Privacy of recent RFID authentication protocols. In Information security practice and experience (pp. 263–277). Springer.
Abdolmaleki, B., Baghery, K., Akhbari, B., & Aref, M. R. (2014). Attacks and improvements on two new-found RFID authentication protocols. In Telecommunications (IST), 2014 7th international symposium on IEEE (pp. 895–900).
Juels, A. (2006). RFID security and privacy: A research survey. IEEE Journal on Selected Areas in Communications, 24(2), 381–394.
Vaudenay, S. (2007). On privacy models for RFID. In International Conference on the Theory and Application of Cryptology and Information Security (pp. 68–87). Springer.
Coisel, I., & Martin, T. (2013). Untangling RFID privacy models. Journal of Computer Networks and Communications, 2013, 710275. https://doi.org/10.1155/2013/710275.
Avoine, G. (2005). Adversarial model for radio frequency identification. IACR Cryptology ePrint Archive, 2005, 49.
Juels, A., & Weis, S. A. (2009). Defining strong privacy for RFID. ACM Transactions on Information and System Security (TISSEC), 13(1), 7.
Deng, R. H., Li, Y., Yung, M., & Zhao, Y. (2010). A new framework for RFID privacy. In European Symposium on Research in Computer Security (pp. 1–18). Springer.
Hermans, J., Pashalidis, A., Vercauteren, F., & Preneel, B. (2011). A new RFID privacy model. In European symposium on research in computer security (pp. 568–587). Springer.
Habibi, M. H., Aref, M. R., & Ma, D. (2011). Addressing flaws in RFID authentication protocols. In International conference on cryptology in India (pp. 216–235). Springer.
Phan, R. C.-W., Wu, J., Ouafi, K., & Stinson, D. R. (2011). Privacy analysis of forward and backward untraceable RFID authentication schemes. Wireless Personal Communications, 61(1), 69–81.
Alagheband, M. R., & Aref, M. R. (2013). Unified privacy analysis of new-found RFID authentication protocols. Security and Communication Networks, 6(8), 999–1009.
Wang, S., Liu, S., & Chen, D. (2015). Security analysis and improvement on two RFID authentication protocols. Wireless Personal Communications, 82(1), 21–33.
Safkhani, M., Peris-Lopez, P., Hernandez-Castro, J. C., & Bagheri, N. (2014). Cryptanalysis of the cho et al. protocol: A hash-based RFID tag mutual authentication protocol. Journal of Computational and Applied Mathematics, 259, 571–577.
Acknowledgements
Two first authors were supported by the Estonian Research Council grant (PRG49). The third author has been supported by Iranian National Science Foundation (INSF) under contract No. 92027548 and Sharif Industrial Relation Office (SIRO) under Grant No. G931223.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Baghery, K., Abdolmaleki, B., Khazaei, S. et al. Breaking anonymity of some recent lightweight RFID authentication protocols. Wireless Netw 25, 1235–1252 (2019). https://doi.org/10.1007/s11276-018-1717-0
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11276-018-1717-0