Skip to main content

Advertisement

Log in

An optimization model for investment in technology and government regulation

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Companies struggle every day to estimate the adequate level of investment in new technologies, and governments lack the tools to determine the impact of their regulations on industry including telecommunications networks. Despite these facts, few studies discuss ways to assess appropriate levels of investment for technological initiatives and government regulations. To fill this gap, this study provides an optimization model for the investment of technology and government regulation, based on efficiencies. Results obtained from surveying northern European companies support the importance of estimating investment in technology and government regulation levels. The survey identified the four most relevant factors for practitioners: quality, cost, technology adoption, and government regulations. Based on the survey’s results, the model evaluates the level of investment for technology adoption and government regulations using cost and quality as target variables. Additional data from a German carrier served to test the model. Results show that technology investment delivers more benefits in cost and quality by increasing technology adoption. However, the model also suggests that diminishing returns make efficiencies stall at a certain level of technology adoption, and shows an investment threshold dependent on the type of benefit, cost, or quality the company seeks to maximize. Regarding government regulation, the model shows a counterintuitive behavior at higher levels of investment for the cost coefficients and at all levels of investment for the quality coefficient. This suggests that government regulation effects could be shifting from fixed-order cost to other types of costs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. Input values for efficiency coefficients and exponential parameters were taken from previous modeling experiences.

References

  1. Adelman, D., Aydin, A., & Parker, R. P. (2015). Driving technology innovation down a competitive supply chain. In INFORMS.

  2. Adjerid, I., Acquisti, A., Telang, R., Padman, R., & Adler-Milstein, J. (2015). The impact of privacy regulation and technology incentives: The case of health information exchanges. Management Science, 62(4), 1042–1063.

    Article  Google Scholar 

  3. Alzawawi, M. (2014). Drivers and obstacles for creating sustainable supply chain management and operations. Retrieved March 20, 2016 from http://www.asee.org/documents/zones/zone1/2014/Student/PDFs/109.pdf.

  4. Atkin, D., Chaudhry, A., Chaudry, S., Khandelwal, A. K., & Verhoogen, E. (2017). Organizational barriers to technology adoption: Evidence from soccer-ball producers in Pakistan. The Quarterly Journal of Economics, 132, 1101–1164.

    Article  Google Scholar 

  5. Azadeh, A., Keramati, A., & Songhori, M. (2009). An integrated Delphi/VAHP/DEA framework for evaluation of information technology/information system (IT/IS) investments. International Journal of Advanced Manufacturing Technology, 45, 1233–1251.

    Article  Google Scholar 

  6. Billington, P. (1987). The classic economic production quantity model with setup cost as a function of capital expenditure. Decision Sciences, 18, 25–42.

    Article  Google Scholar 

  7. Bojanc, R., Jerman-Blazic, B., & Tekavcic, M. (2012). Managing the investment in information security technology by use of a quantitative modeling. Information Processing and Management, 48, 1031–1052.

    Article  Google Scholar 

  8. Chen, Y., Liang, L., Yang, F., & Zhu, J. (2006). Evaluation of information technology investment: A data envelopment analysis approach. Computers & Operations Research, 33, 1368–1379.

    Article  Google Scholar 

  9. Chou, T.-Y., Chou, S., & Tzeng, G.-H. (2006). Evaluating IT/IS investments: A fuzzy multi-criteria decision model approach. European Journal of Operational Research, 173, 1026–1046.

    Article  Google Scholar 

  10. Chuu, S.-J. (2014). An investment evaluation of supply chain RFID technologies: A group decision-making model with multiple information source. Knowledge-Based Systems, 66, 210–220.

    Article  Google Scholar 

  11. Devaraj, S., & Kohli, R. (2003). Performance impacts of information technology: Is actual usage the missing link? Management Science, 49(3), 273–289.

    Article  Google Scholar 

  12. Dewan, S., Shi, C., & Gurbaxani, V. (2007). Investigating the risk-return relationship of information technology investment: Firm-level empirical analysis. Management Science, 53(12), 273–289.

    Article  Google Scholar 

  13. Doerr, K., Gates, W., & Mutty, J. (2006). A hybrid approach to the valuation of RFID/MEMS technology applied to ordnance inventory. International Journal of Production Economics, 103, 1829–1842.

    Article  Google Scholar 

  14. Gunasekaran, A., Love, P. E. D., Rahimi, F., & Miele, R. (2001). A model for investment justification in information technology projects. International Journal of Information Management, 21, 349–364.

    Article  Google Scholar 

  15. Hwang, H.-G., Ku, C.-Y., Yen, D., & Cheng, C.-C. (2004). Critical factors influencing the adoption of data warehouse technology: A study of the banking industry in Taiwan. Decision Support Systems, 37(1), 1–21. https://doi.org/10.1016/S0167-9236(02)00191-4.

    Article  Google Scholar 

  16. Kauffman, R., Liu, J., & Ma, D. (2015). Technology investment decision-making under uncertainty. Information Technology and Management, 16, 153–172.

    Article  Google Scholar 

  17. Lee, I., & Lee, B.-C. (2010). An investment evaluation of supply chain RFID technologies: A normative modeling approach. International Journal of Production Economics, 125, 313–323.

    Article  Google Scholar 

  18. Lu, M.-T., Lin, S.-W., & Tzeng, G.-H. (2013). Improving RFID adoption in Taiwan’s healthcare industry based on a DEATEL technique with a hybrid MCDM model. Decision Support Systems, 56, 259–269.

    Article  Google Scholar 

  19. Luftman, J., & Kempaiah, R. (2008). Key issues for IT executives 2007. MIS Quarterly Executive, 7, 99–112.

    Google Scholar 

  20. Marchet, G., Perotti, S., & Mangiaracina, R. (2012). Modeling the impacts of ICT adoption for inter-modal transportation. International Journal of Physical Distribution and Logistics Management, 42, 110–127.

    Article  Google Scholar 

  21. Menon, N., & Lee, B. (2000). Cost control and production performance enhancement by IT investment and regulation changes: Evidence from the healthcare industry. Decision Support Systems, 30, 153–169.

    Article  Google Scholar 

  22. Newell, R., Jaffe, A., & Stavins, R. (1999). The induced innovation hypothesis and energy-saving technological change. The Quarterly Journal of Economics, 114, 941–975.

    Article  Google Scholar 

  23. Rouhani, S., Ghazanfari, M., & Jafari, M. (2012). Evaluation model of business intelligence for enterprise systems using fuzzy TOPSIS. Expert Systems with Applications, 39, 3764–3771.

    Article  Google Scholar 

  24. You, C. J., Lee, C. K. M., Chen, S. L., & Jiao, R. (2012). A real option theoretic fuzzy evaluation model for enterprise resource planning investment. Journal of Engineering and Technology Management, 29, 47–61.

    Article  Google Scholar 

  25. Zandi, F., & Tavana, M. (2011). A fuzzy goal programming model for strategic information technology investment assessment. Benchmarking: An International Journal, 18, 172–196.

    Article  Google Scholar 

  26. Zhu, K., Kraemer, K. L., & Xu, S. (2006). The process of innovation assimilation by firms in different countries: A technology diffusion perspective on E-business. Management Science, 52(10), 1557–1576.

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Mexican National Council of Science and Technology (CONACYT) for financing this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliverio Cruz-Mejia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Technology adoption cost-oriented model

The derivative of \(TC_{c}\) with respect to technology (T) is given by:

$$\frac{{\partial ({\text{TC}}_{\text{c}} )}}{{\partial {\text{T}}}} = \frac{{{\text{O}}\left( {\frac{{\partial {\text{R}}}}{{\partial {\text{T}}}}} \right){\text{D}}}}{\text{Q}} + \frac{{\partial {\text{J}}}}{{\partial {\text{T}}}}{\text{CD}} + 1$$
(10)

From Eqs. 3 and 8:

$$\frac{{\partial {\text{R}}}}{{\partial {\text{T}}}} =\upbeta_{1} \left( {{\text{M}} - {\text{N}}} \right){\text{e}}^{{\upbeta_{1} {\text{T}}}}$$
(11)

From Eqs. 10 and 7, setting Eq. 10 = 0:

$$\frac{{\partial {\text{R}}}}{{\partial {\text{T}}}} = - \left( {\frac{{1 + {\text{CD}}\left( {\frac{{\partial {\text{J}}}}{{\partial {\text{T}}}}} \right)}}{\text{OD}}} \right){\text{Q}}$$
(12)

Given that:

$$\frac{{\partial {\text{J}}}}{{\partial {\text{T}}}} =\upbeta_{5} \left( {{\text{A}} - {\text{E}}} \right){\text{e}}^{{\upbeta_{5} {\text{T}}}}$$

Then from Eqs. 11 and 12:

$$\upbeta_{1} \left( {{\text{M}} - {\text{N}}} \right){\text{e}}^{{\upbeta_{1} {\text{T}}}} = - \left( {\frac{{1 + {\text{CD}}\left( {\upbeta_{5} \left( {{\text{A}} - {\text{E}}} \right){\text{e}}^{{\upbeta_{5} {\text{T}}}} } \right)}}{\text{OD}}} \right){\text{Q}}$$
(13)

Substituting Eq. 2 in Eq. 13’s Q and solving for \(R^{*}\):

$${\text{R}}^{ *} = \left[ {\frac{{ -\upbeta_{1} \left( {{\text{M}} - {\text{N}}} \right){\text{e}}^{{\upbeta_{1} {\text{T}}}} }}{{1 + {\text{CD}}\left( {\upbeta_{5} \left( {{\text{A}} - {\text{E}}} \right){\text{e}}^{{\upbeta_{5} {\text{T}}}} } \right)}}} \right]^{2} \frac{\text{ODHI}}{2}$$
(14)

From Eqs. 3 and 14:

$${\text{T}}^{ *} = \frac{{\ln \left( {\frac{{{\text{R}}^{ *} - {\text{N}} + {\text{M}}}}{{{\text{M}} - {\text{N}}}}} \right)}}{{\upbeta_{1} }}$$
(15)

1.2 Technology adoption quality-oriented model

Following the same process, from Eqs. 16 and 17:

$$\frac{{\partial {\text{TC}}_{\text{Q}} }}{{\partial {\text{T}}}} = 1 + \frac{{{\text{HQ}}\left( {\frac{{\partial {\text{I}}}}{{\partial {\text{T}}}}} \right)}}{2}$$
(19)

Setting Eq. 20 = 0

$$\frac{{\partial {\text{I}}}}{{\partial {\text{T}}}} = - \frac{2}{\text{HQ}}$$
(20)

From Eqs. 4 and 18:

$$\frac{{\partial {\text{I}}}}{{\partial {\text{T}}}} =\upbeta_{3} \left( {{\text{L}} - {\text{U}}} \right){\text{e}}^{{\upbeta_{3} {\text{T}}}}$$
(21)

Then:

$$\upbeta_{3} \left( {{\text{L}} - {\text{U}}} \right){\text{e}}^{{\upbeta_{3} {\text{T}}}} = - \frac{2}{\text{HQ}}$$
(22)

Substituting Eq. 2 in Q:

$${\text{I}}^{ *} = \frac{{{\text{ORDH}}\left[ {\upbeta_{3} \left( {{\text{L}} - {\text{U}}} \right){\text{e}}^{{\upbeta_{3} {\text{T}}}} } \right]^{2} }}{2}$$
(23)

\(J^{*}\) is obtained from Eqs. 5 and 15:

$${\text{J}}^{ *} = \left( {{\text{E}} - {\text{A}}} \right) + \left( {{\text{A}} - {\text{E}}} \right){\text{e}}^{{\upbeta_{5} {\text{T}}^{ *} }}$$
(24)

Summarizing, the following optimal equations were obtained:

$${\text{R}}^{ *} = \left[ {\frac{{ -\upbeta_{1} \left( {{\text{M}} - {\text{N}}} \right){\text{e}}^{{\upbeta_{1} {\text{T}}}} }}{{1 + {\text{CD}}\left( {\upbeta_{5} \left( {{\text{A}} - {\text{E}}} \right){\text{e}}^{{\upbeta_{5} {\text{T}}}} } \right)}}} \right]^{2} \frac{\text{ODHI}}{2}$$
(14)
$${\text{T}}^{ *} = \frac{{\ln \left( {\frac{{{\text{R}}^{ *} - {\text{N}} + {\text{M}}}}{{\left( {{\text{M}} - {\text{N}}} \right)}}} \right)}}{{\upbeta_{1} }}$$
(15)
$${\text{I}}^{ *} = \frac{{{\text{ORDH}}\left[ {\upbeta_{3} \left( {{\text{L}} - {\text{U}}} \right){\text{e}}^{{\upbeta_{3} {\text{T}}}} } \right]^{2} }}{2}$$
(23)
$${\text{J}}^{ *} = \left( {{\text{E}} - {\text{A}}} \right) + \left( {{\text{A}} - {\text{E}}} \right){\text{e}}^{{\upbeta_{5} {\text{T}}^{ *} }}$$
(24)

1.3 Government regulation optimization

The derivative of \(TC_{c}\) with respect to government regulations (G) is given by:

$$\frac{{\partial ({\text{TC}}_{\text{c}} )}}{{\partial {\text{G}}}} = \frac{{{\text{O}}\left( {\frac{{\partial {\text{R}}}}{{\partial {\text{G}}}}} \right){\text{D}}}}{\text{Q}} + \frac{{\partial {\text{J}}}}{{\partial {\text{G}}}}{\text{CD}} + 1$$
(32)

From Eqs. 26 and 31:

$$\frac{{\partial {\text{R}}}}{{\partial {\text{G}}}} = - \frac{{\left( {{\text{N}} - {\text{M}}} \right){\text{e}}^{{\frac{1}{{\upbeta_{2} {\text{G}}}}}} }}{{\upbeta_{2} {\text{G}}^{2} }}$$
(33)

From Eqs. 33 and 30, setting Eq. 33 = 0:

$$\frac{{\partial {\text{R}}}}{{\partial {\text{G}}}} = - \left( {\frac{{1 + {\text{CD}}\left( {\frac{{\partial {\text{J}}}}{{\partial {\text{G}}}}} \right)}}{\text{OD}}} \right){\text{Q}}$$
(34)

Then, from Eqs. 33 and 34:

$$\frac{{\left( {{\text{N}} - {\text{M}}} \right){\text{e}}^{{\frac{1}{{\upbeta_{2} {\text{G}}}}}} }}{{\upbeta_{2} {\text{G}}^{2} }} = \left( {\frac{{1 + {\text{CD}}\left( {\frac{{\partial {\text{J}}}}{{\partial {\text{G}}}}} \right)}}{\text{OD}}} \right){\text{Q}}$$
(35)

Substituting Eq. 2 in Eq. 35’s Q and solving for \(R^{*}\):

$${\text{R}}^{ *} = \frac{{\left[ {\left( {{\text{N}} - {\text{M}}} \right){\text{e}}^{{\frac{1}{{\upbeta_{2} {\text{G}}}}}} } \right]^{2} {\text{ODHI}}}}{{2\left[ {\upbeta_{2} {\text{G}}\left( {1 - {\text{CD}}\left( {\frac{{\left( {{\text{E}} - {\text{A}}} \right){\text{e}}^{{\frac{1}{{\upbeta_{6} {\text{G}}}}}} }}{{\upbeta_{6} {\text{G}}^{2} }}} \right)} \right)} \right]^{2} }}$$
(36)

From Eq. 26:

$${\text{G}}^{ *} = \frac{1}{{\upbeta_{2} \ln \left( {\frac{{{\text{R}}^{ *} - {\text{N}} + {\text{M}}}}{{\left( {{\text{N}} - {\text{M}}} \right)}}} \right)}}$$
(37)

1.4 Government regulation quality-oriented model

Following the same process, from Eqs. 39 and 40:

$$\frac{{\partial {\text{TC}}_{\text{Q}} }}{{\partial {\text{G}}}} = 1 + \frac{{{\text{HQ}}\left( {\frac{{\partial {\text{I}}}}{{\partial {\text{G}}}}} \right)}}{2}$$
(41)

Setting Eq. 41 = 0:

$$\frac{{\partial {\text{I}}}}{{\partial {\text{G}}}} = - \frac{2}{\text{HQ}}$$
(42)

From Eqs. 27 and 41:

$$\frac{{\partial {\text{I}}}}{{\partial {\text{G}}}} = - \frac{{\left( {{\text{U}} - {\text{L}}} \right){\text{e}}^{{\frac{1}{{\upbeta_{4} {\text{G}}}}}} }}{{\upbeta_{4} {\text{G}}^{2} }}$$
(43)

Then:

$$- \frac{{\left( {{\text{U}} - {\text{L}}} \right){\text{e}}^{{\frac{1}{{\upbeta_{4} {\text{G}}}}}} }}{{\upbeta_{4} {\text{G}}^{2} }} = - \frac{2}{\text{HQ}}$$
(44)

Substituting Eq. 2 in Eq. 44’s Q:

$${\text{I}}^{ *} = \frac{{{\text{ORDH}}\left[ {\left( {{\text{U}} - {\text{L}}} \right){\text{e}}^{{\frac{1}{{\upbeta_{4} {\text{G}}}}}} } \right]^{2} }}{{2\left[ {\upbeta_{4} {\text{G}}^{2} } \right]^{2} }}$$
(45)

\(J^{*}\) is obtained from Eqs. 28 and 38:

$${\text{J}}^{ *} = \left( {{\text{E}} - {\text{A}}} \right) + \left( {{\text{E}} - {\text{A}}} \right){\text{e}}^{{\frac{1}{{\upbeta_{6} {\text{G}}^{ *} }}}}$$
(46)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monsreal-Barrera, M.M., Cruz-Mejia, O., Ozkul, S. et al. An optimization model for investment in technology and government regulation. Wireless Netw 26, 4929–4941 (2020). https://doi.org/10.1007/s11276-019-01958-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-01958-z

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy