Skip to main content

Advertisement

Log in

Secure and optimized intrusion detection scheme using LSTM-MAC principles for underwater wireless sensor networks

  • Original Paper
  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Underwater Wireless Sensor Networks (UWSNs) are the type of WSNs that transmit the data through water medium and monitor the oceanic conditions, water contents, under-sea habitations, underwater beings and military objects. Unlike air medium, water channel creates stronger communication barriers. In addition, the malicious data injection and other network attacks create security problems during data communication. Protecting the vulnerable UWSN channel is not an easy task under critical water conditions. Many research works proposed in the literature used cryptography principles and intelligent intrusion detection systems to secure the network activities from malicious nodes. However, the need for Machine Learning (ML) and Deep Learning (DL) associated Medium Access Control (MAC) principles is expected for handling the barriers in uncertain UWSN. In this regard, this article proposes a new Intrusion detection system with Integrated Secure MAC principles and Long Short-Term Memory (LSTM) architectures for organizing real-time neighbor monitoring tasks. The proposed system implements Generative Adversarial Network (GAN) driven UWSN channel assessment models and Secure LSTM-MAC principles to protect the data communication. In this regard, the proposed model creates the Intrusion Detection System (IDS) using trained distributed agents. These agents run in each legitimate sensor node contain novel LSTM-MAC engine, intrusion dataset, rule-based monitoring techniques, Secure Hashing Algorithm-3 (SHA-3), Two Fish algorithm and packet filtering tools. The proposed LSTM and agent-based model drives adaptive MAC channel operations to avoid malicious traffics in to legitimate nodes. In addition, this work implements neighbor-based packet monitoring, signal jamming and alert messaging procedures to build reliable security services against different types of attacks. The experiments and the observations reveal the performance of proposed techniques is proved to be 5% to 10% higher than existing techniques in various aspects measured with different metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

Not Applicable.

Code availability

Not Applicable.

References

  1. Akyildiz, I. F., Pompili, D., & Melodia, T. (2005). Underwater acoustic sensor networks: Research challenges. Ad Hoc Networks, 3(3), 257–279.

    Article  Google Scholar 

  2. Qiao, G., Zhao, C., Zhou, F., & Ahmed, N. (2019). Distributed localization based on signal propagation loss for underwater sensor networks. IEEE Access, 7, 112985–112995.

    Article  Google Scholar 

  3. Li, S., Qu, W., Liu, C., Qiu, T., & Zhao, Z. (2019). Survey on high reliability wireless communication for underwater sensor networks. Journal of Network and Computer Applications, 148, 102446.

    Article  Google Scholar 

  4. Ahmad, Z., Shahid Khan, A., Wai Shiang, C., Abdullah, J., & Ahmad, F. (2021). Network intrusion detection system: A systematic study of machine learning and deep learning approaches. Transactions on Emerging Telecommunications Technologies, 32(1), e4150.

    Article  Google Scholar 

  5. Narayanan, K. L., Krishnan, R. S., Julie, E. G., Robinson, Y. H., & Shanmuganathan, V. (2022). Machine learning based detection and a novel EC-BRTT algorithm based prevention of DoS attacks in wireless sensor networks. Wireless Personal Communications, 127, 479–503.

    Article  Google Scholar 

  6. Medjek, F., Tandjaoui, D., Djedjig, N., & Romdhani, I. (2021). Fault-tolerant AI-driven intrusion detection system for the Internet of Things. International Journal of Critical Infrastructure Protection, 34, 100436.

    Article  Google Scholar 

  7. Zhao, R., Yin, J., Xue, Z., Gui, G., Adebisi, B., Ohtsuki, T., Hais, G., & Sari, H. (2021). An efficient intrusion detection method based on dynamic autoencoder. IEEE Wireless Communications Letters, 10(8), 1707–1711.

    Article  Google Scholar 

  8. Alfouzan, F., Shahrabi, A., Ghoreyshi, S. M., & Boutaleb, T. (2019). A comparative performance evaluation of distributed collision-free MAC protocols for underwater sensor networks. In Proceedings of the 8th International Conference on Sensor Networks - SENSORNETS, pp.85–93.

  9. Muhammed, D., Anisi, M. H., Zareei, M., Vargas-Rosales, C., & Khan, A. (2018). Game theory-based cooperation for underwater acoustic sensor networks: Taxonomy, review, research challenges and directions. Sensors, 18, 425. https://doi.org/10.3390/s18020425

    Article  Google Scholar 

  10. Karim, S., Shaikh, F. K., Chowdhry, B. S., Mehmood, Z., Tariq, U., Naqvi, R. A., & Ahmed, A. (2021). GCORP: Geographic and cooperative opportunistic routing protocol for underwater sensor networks. IEEE Access, 9, 27650–27667.

    Article  Google Scholar 

  11. Ahmad, B., Jian, W., Enam, R. N., & Abbas, A. (2021). Classification of DoS attacks in smart underwater wireless sensor network. Wireless Personal Communications, 116(2), 1055–1069.

    Article  Google Scholar 

  12. Yisa, A. G., Dargahi, T., Belguith, S., & Hammoudeh, M. (2021). Security challenges of Internet of underwater Things: A systematic literature review. Transactions on Emerging Telecommunications Technologies, 32(3), e4203.

    Article  Google Scholar 

  13. Peng, Z., Han, X., & Ye, Y. (2021). Enhancing underwater sensor network security with coordinated communications. In ICC 2021-IEEE International Conference on Communications, pp. 1–6, IEEE.

  14. Ali, T., Irfan, M., Shaf, A., Saeed Alwadie, A., Sajid, A., Awais, M., & Aamir, M. (2020). A secure communication in IoT enabled underwater and wireless sensor network for smart cities. Sensors, 20(15), 4309.

    Article  Google Scholar 

  15. Shelar, P. A., Mahalle, P. N., & Shinde, G. (2020). Secure data transmission in underwater sensor network: Survey and discussion. In Internet of Things, Smart Computing and Technology: A Roadmap Ahead (pp. 323–360). Springer, Cham.

  16. Boubiche, D. E., Athmani, S., Boubiche, S., & Toral-Cruz, H. (2021). Cybersecurity issues in wireless sensor networks: Current challenges and solutions. Wireless Personal Communications, 117(1), 177–213.

    Article  Google Scholar 

  17. Abood, M. S., Wang, H., Mahdi, H. F., Hamdi, M. M., & Abdullah, A. S. (2021). Review on secure data aggregation in wireless sensor networks. IOP Conference Series: Materials Science and Engineering, 1076(1), 012053.

    Article  Google Scholar 

  18. Elshrkawey, M., & Al-Mahdi, H. (2021). SDA-SM: An efficient secure data aggregation scheme using separate MAC across wireless sensor networks. International Journal of Computers, Communications & Control, 16(2), 1–18.

    Article  Google Scholar 

  19. Su, Y., Zhou, Z., Jin, Z., & Yang, Q. (2020). A joint relay selection and power allocation MAC protocol for underwater acoustic sensor network. IEEE Access, 8, 65197–65210.

    Article  Google Scholar 

  20. Rani, E., & Juneja, V. (2021). Secure communication techniques for underwater WSNs. In Energy-Efficient Underwater Wireless Communications and Networking, pp. 171–186, IGI Global.

  21. Bagali, S., & Sundaraguru, R. (2020). Maximize resource utilization based channel access model with presence of reactive jammer for underwater wireless sensor network. International Journal of Electrical and Computer Engineering, 10(3), 3284.

    Google Scholar 

  22. Sun, N., Wang, X., Han, G., Peng, Y., & Jiang, J. (2021). Collision-free and low delay MAC protocol based on multi-level quorum system in underwater wireless sensor networks. Computer Communications, 173, 56–69.

    Article  Google Scholar 

  23. Usha, M., & Ashween, R. (2021). SCLRP-architecture for secure cross-layer routing protocol for underwater acoustic sensor networks using fuzzy logic and enhanced algebra homomorphic encryption, research square.

  24. Wei, D., Qiuling, Y., Yanxia, C., Shijie, S., & Xiangdang, H. (2021). RHNE-MAC: Random handshake MAC protocol based on Nash equilibrium for underwater wireless sensor networks. IEEE Sensors Journal, 21(18), 21090–21098. https://doi.org/10.1109/JSEN.2021.3098236

    Article  Google Scholar 

  25. Wen, W., Shang, C., Dong, Z., Keh, H. C., & Roy, D. S. (2021). An intrusion detection model using improved convolutional deep belief networks for wireless sensor networks. International Journal of Ad Hoc and Ubiquitous Computing, 36(1), 20–31.

    Article  Google Scholar 

  26. Arifeen, M. M., Al Mamun, A., Ahmed, T., Kaiser, M. S., & Mahmud, M. (2021). A blockchain-based scheme for Sybil attack detection in underwater wireless sensor networks. In Proceedings of International Conference on Trends in Computational and Cognitive Engineering, pp. 467–476, Springer.

  27. Khan, Z. A., Karim, O. A., Abbas, S., Javaid, N., Bin Zikria, Y., & Tariq, U. (2021). Q-learning based energy-efficient and void avoidance routing protocol for underwater acoustic sensor networks. Computer Networks, 197, 108309.

    Article  Google Scholar 

  28. Gite, P., Shrivastava, A., Krishna, K. M., Kusumadevi, G. H., Dilip, R., & Potdar, R. M. (2021). Under water motion tracking and monitoring using wireless sensor network and machine learning. Materials Today Proceedings. https://doi.org/10.1016/j.matpr.2021.07.283

    Article  Google Scholar 

  29. Poornima, I. G. A., & Paramasivan, B. (2020). Anomaly detection in wireless sensor network using machine learning algorithm. Computer Communications, 151, 331–337.

    Article  Google Scholar 

  30. Mehta, A., Sandhu, J. K., & Sapra, L. (2020). Machine learning in wireless sensor networks: A retrospective. In 2020 Sixth International Conference on Parallel, Distributed and Grid Computing, pp. 328–331, IEEE.

  31. Qin, D., Tang, J., & Yan, Z. (2020). Underwater acoustic source localization using LSTM neural network. In 2020 39th Chinese Control Conference, pp. 7452–7457). IEEE.

  32. Topini, E., Topini, A., Franchi, M., Bucci, A., Secciani, N., Ridolfi, A., & Allotta, B. (2020). LSTM-based dead reckoning navigation for autonomous underwater vehicles. In Global Oceans 2020: Singapore–US Gulf Coast, pp. 1–7, IEEE.

  33. Song, T., Jiang, J., Li, W., & Xu, D. (2020). A deep learning method with merged LSTM neural networks for SSHA prediction. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 2853–2860.

    Article  Google Scholar 

  34. Li, S., Yang, S., & Liang, J. (2020). Recognition of ships based on vector sensor and bidirectional long short-term memory networks. Applied Acoustics, 164, 107248.

    Article  Google Scholar 

  35. Su, Y., Zhang, L., Fu, X., & Li, Y. (2020). ACAR: An ant colony algorithm-based routing protocol for underwater acoustic sensor network. IET Communications, 14(22), 3945–3954.

    Article  Google Scholar 

  36. Battula, A., & EmaldaRoslin, S. (2021). A study on underwater wireless sensor networks-void area. In 2021 5th International Conference on Computing Methodologies and Communication (ICCMC), pp. 186–191, IEEE.

  37. Agajo, J., Adewale, A. L., Idama, E. O., Prudence, E. E., & Felix, E. (2020). A conceptualized model for data transmission in underwater acoustic wireless sensor network. Applications of Modelling and Simulation, 4, 40–46.

    Google Scholar 

  38. Ismat, N., Qureshi, R., Enam, R. N., Noor, S., & Tahir, M. (2021). Cluster estimation in terrestrial and underwater sensor networks. Wireless Personal Communications, 116(2), 1443–1462.

    Article  Google Scholar 

  39. Soundararajan, R., Palanisamy, N., Patan, R., Nagasubramanian, G., & Khan, M. S. (2020). Secure and concealed watchdog selection scheme using masked distributed selection approach in wireless sensor networks. IET Communications, 14(6), 948–955.

    Article  Google Scholar 

  40. Rajasoundaran, S., Prabu, A. V., Kumar, G. S., Malla, P. P., & Routray, S. (2021). Secure opportunistic watchdog production in wireless sensor networks: A review. Wireless Personal Communications, 120, 1895–1919.

    Article  Google Scholar 

  41. Rajasoundaran, S., Prabu, A. V., Routray, S., Kumar, S. S., Malla, P. P., Maloji, S., Mukherjee, Amrit, & Ghosh, U. (2021). Machine learning based deep job exploration and secure transactions in virtual private cloud systems. Computers & Security, 109, 102379.

    Article  Google Scholar 

  42. Rajasoundaran, S., Kumar, S. V. N., Selvi, M., Ganapathy, S., Rakesh, R., & Kannan, A. (2021). Machine learning based volatile block chain construction for secure routing in decentralized military sensor networks. Wireless Networks, 27, 4513–4534.

    Article  Google Scholar 

  43. Rajasoundaran, S., Kumar, S. V. N., Selvi, S., Sannasi Ganapthy, M., & Kannan, A. (2022). Multi-tier block truncation coding model using genetic auto encoders for gray scale images. Multimedia Tools and Applications, 81, 42621–42647. https://doi.org/10.1007/s11042-022-13475-x

    Article  Google Scholar 

  44. Pandey, K., & Kumar, M. (2021). Recent and future node deployment strategies in the underwater sensor network (UWSN). In Energy-Efficient Underwater Wireless Communications and Networking, pp. 34–44, IGI Global.

  45. Kumar Gola, K., Chaurasia, N., Gupta, B., & Singh Niranjan, D. (2021). Sea lion optimization algorithm-based node deployment strategy in underwater acoustic sensor network. International Journal of Communication Systems, 34(5), e4723.

    Article  Google Scholar 

  46. Rani, M., & Singal, P. (2021). Networks of underwater sensor wireless systems: Latest problems and threats. International Journal of Wireless Networks and Broadband Technologies (IJWNBT), 10(1), 59–69.

    Article  MathSciNet  Google Scholar 

  47. Misra, S., & Ojha, T. (2021). SecRET: Secure range-based localization with evidence theory for underwater sensor networks. ACM Transactions on Autonomous and Adaptive Systems (TAAS), 15(1), 1–26.

    Google Scholar 

  48. Fan, J., Zhao, X., Wang, W., Cai, S., & Zhang, L. (2021). Towards the saturation throughput disparity of flows in directional CSMA/CA networks: An analytical model. KSII Transactions on Internet & Information Systems, 15(4), 1293–1316.

    Google Scholar 

  49. Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.

    Article  Google Scholar 

  50. Heidemann, J., Stojanovic, M., & Zorzi, M. (2012). Underwater sensor networks: Applications, advances and challenges. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1958), 158–175.

    Article  Google Scholar 

  51. Fahmy, H. M. A. (2020). Concepts, applications, experimentation and analysis of wireless sensor networks. Springer.

    Google Scholar 

  52. Liu, Q., Chen, X., Liu, X., & Linge, N. (2016). CACA-UAN: A context-aware communication approach based on the underwater acoustic sensor network. In International conference on cloud computing and security, pp. 37–47.

  53. Wu, D., Xu, H., Jiang, Z., Yu, W., Wei, X., & Lu, J. (2021). EdgeLSTM: Towards deep and sequential edge computing for IoT applications. IEEE/ACM Transactions on Networking, 29(4), 1895–1908. https://doi.org/10.1109/TNET.2021.3075468

    Article  Google Scholar 

  54. Wu, D., Jiang, Z., Xie, X., Wei, X., Yu, W., & Li, R. (2020). LSTM learning with Bayesian and Gaussian processing for anomaly detection in industrial IoT. IEEE Transactions on Industrial Informatics, 16(8), 5244–5253. https://doi.org/10.1109/TII.2019.2952917

    Article  Google Scholar 

  55. Zhang, S., Li, Y., Liu, X., Guo, S., Wang, W., Wang, J., Ding, B., & Wu, D. (2020). Towards real-time cooperative deep inference over the cloud and edge end devices. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 4(2), 1–24. https://doi.org/10.1145/3397315

    Article  Google Scholar 

  56. Nancy, P., Muthurajkumar, S., Ganapathy, S., Santhosh Kumar, S. V. N., Selvi, M., & Arputharaj, K. (2020). Intrusion detection using dynamic feature selection and fuzzy temporal decision tree classification for wireless sensor networks. IET Communications, 14(5), 88–895.

    Article  Google Scholar 

  57. Sivatha Sindhu, S. S., & Kannan, A. (2010). Evolving clusters for network intrusion detection system using genetic-X-means algorithm. Information Security Journal: A Global Perspective, 19(4), 204–212.

    Google Scholar 

  58. S Bose, S Bharathimurugan, A Kannan (2007) Multi-layer integrated anomaly intrusion detection system for mobile ad-hoc networks. Proceedings of the 2007 IEEE International Conference on Signal Processing, Communications and Networking, pp. 360–365.

  59. Rajendran, R., Santhosh Kumar, S. V. N., Palanichamy, Y., & Arputharaj, K. (2019). Detection of DoS attacks in cloud networks using intelligent rule based classification system. Cluster Computing, 22(Suppl 1), 423–434.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

SR- Article Writing, SKSVN, SM System Modelling and TK and KA Implementation.

Corresponding author

Correspondence to S. Rajasoundaran.

Ethics declarations

Conflict of interest

Not Applicable.

Ethical approval

Not Applicable.

Consent to participate

Not Applicable.

Consent for publication

Not Applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajasoundaran, S., Kumar, S.V.N.S., Selvi, M. et al. Secure and optimized intrusion detection scheme using LSTM-MAC principles for underwater wireless sensor networks. Wireless Netw 30, 209–231 (2024). https://doi.org/10.1007/s11276-023-03470-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-023-03470-x

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy