Skip to main content

Query-based unsupervised learning for improving social media search

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

In the current information era over the internet, social media has become one of the essential information sources for users. While the text is the primary information representation, finding relevant information is a challenging mission for researchers due to its nature (e.g., short length, sparseness). Acquiring high-quality search results from massive data, such as social media needs a set of representative query terms that are not always available. In this paper, we propose a novel query-based unsupervised learning model to represent the implicit relationships in the short text from social media. This bridges the gap of the lack of word co-occurrences without requiring many parameters to be estimated and external evidence to be collected. To confirm the proposed model effectiveness, we compare the proposed model with state-of-the-art lexical, topic model and temporal models on the large-scale TREC microblog 2011-2014 collections. The experimental results show that the proposed model significantly improved overall state-of-the-art lexical, topic model and temporal models with the maximum percentage of increase reaching 33.97% based on MAP value and 21.38% based on Precision at top 30 documents. The proposed model can improve the social media search effectiveness in potential closely retrieval tasks, such as question answering and timeline summarisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Notes

  1. The proposed model called query-based unsupervised short text mining (QUSTM)

  2. http://github.com/lintool/twitter-tools

  3. http://github.com/shuyo/ldig

  4. The experiments are performed in a PC with an Intel(R) Core(TM) i7-4790 CPU @ 3.60 GHz and 16 GB memory running a Windows 7 operating system.

References

  1. Abdul-Jaleel, N., Allan, J., Croft, W.B., Diaz, F., Larkey, L., Li, X., Smucker, M.D., Wade, C.: Umass at Trec 2004: Novelty and hard. In: TREC (2004)

  2. Albakour, M., Macdonald, C., Ounis, I., et al.: On sparsity and drift for effective real-time filtering in microblogs. In: Proceedings of CIKM, pp 419–428 (2013)

  3. Albishre, K., Albathan, M., Li, Y.: Effective 20 newsgroups dataset cleaning. In: Proceedings of WI-IAT, vol. 3, pp 98–101 (2015)

  4. Albishre, K., Li, Y., Xu, Y.: Effective pseudo-relevance for microblog retrieval. In: Proceedings of the Australasian Computer Science Week Multiconference, ACSW ’17, pp. 51:1–51:6 (2017)

  5. Albishre, K., Li, Y., Xu, Y.: Query-based automatic training set selection for microblog retrieval. In: Proceedings of PAKDD, pp. 325–336 (2018)

    Chapter  Google Scholar 

  6. Atefeh, F., Khreich, W.: A survey of techniques for event detection in twitter. Comput. Intell. 31(1), 132–164 (2015)

    Article  MathSciNet  Google Scholar 

  7. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. Journal of Machine Learning Research 3(Jan), 993–1022 (2003)

    MATH  Google Scholar 

  8. Chen, Q., Hu, Q., Huang, J., He, L.: Taker: Fine-grained time-aware microblog search with kernel density estimation. IEEE Transactions on Knowledge and Data Engineering (2018)

  9. Dong, A., Zhang, R., Kolari, P., Bai, J., Diaz, F., Chang, Y., Zheng, Z., Zha, H.: Time is of the essence: improving recency ranking using twitter data. In: Proceedings of WWW, pp. 331–340 (2010)

  10. Efron, M., Golovchinsky, G.: Estimation methods for ranking recent information. In: Proceedings of SIGIR, pp. 495–504 (2011)

  11. Efron, M., Lin, J., He, J., De Vries, A.: Temporal feedback for tweet search with non-parametric density estimation. In: Proceedings of SIGIR, pp. 33–42 (2014)

  12. Fan, F., Qiangm, R., Lv, C., Yang, J.: Improving microblog retrieval with feedback entity model. In: Proceedings of CIKM, pp. 573–582 (2015)

  13. Gao, Y., Xu, Y., Li, Y.: Pattern-based topics for document modelling in information filtering. IEEE Trans. Knowl. Data Eng. 27(6), 1629–1642 (2015)

    Article  Google Scholar 

  14. Gao, Y., Li, Y., Lau, R., Xu, Y., Bashar, M.: Finding semantically valid and relevant topics by association-based topic selection model. ACM Transactions on Intelligent Systems and Technology 9(1), 3:1–3:22 (2017)

    Article  Google Scholar 

  15. Gao, Y., Wenbo, W., Qian, L., Heyan, H., Li, Y.: Extending embedding representation by incorporating latent relations. IEEE Access 6, 52682–52690 (2018)

    Article  Google Scholar 

  16. Hong, L., Davison, B.D.: Empirical study of topic modeling in twitter. In: Proceedings of the first workshop on social media analytics, pp. 80–88 (2010)

  17. Huang, J., Peng, M., Wang, H., Cao, J., Gao, W., Zhang, X.: A probabilistic method for emerging topic tracking in microblog stream. World Wide Web 20(2), 325–350 (2017)

    Article  Google Scholar 

  18. Jin, O., Liu, N.N., Zhao, K., Yu, Y., Yang, Q.: Transferring topical knowledge from auxiliary long texts for short text clustering. In: Proceedings of CIKM, pp. 775–784 (2011)

  19. Li, X., Croft, W.B.: Time-based language models. In: Proceedings of CIKM, pp. 469–475 (2003)

  20. Li, Y., Algarni, A., Albathan, M., Shen, Y., Bijaksana, M.A.: Relevance feature discovery for text mining. IEEE Transactions on Knowledge and Data Engineering 27 (6), 1656–1669 (2015)

    Article  Google Scholar 

  21. Lin, J., Efron, M.: Overview of the trec-2013 microblog track. In: TREC, pp. 1–5 (2013)

  22. Lin, T., Tian, W., Mei, Q., Cheng, H.: The dual-sparse topic model: mining focused topics and focused terms in short text. In: Proceedings of WWW, pp. 539–550 (2014)

  23. Liu, S., Cheng, X., Li, F.: Ranking tweets by labeled and collaboratively selected pairs with transitive closure. In: Proceedings of AAAI, pp. 1235–1241 (2014)

  24. Luo, Z., Osborne, M., Wang, T.: An effective approach to tweets opinion retrieval. World Wide Web 18(3), 545–566 (2015)

    Article  Google Scholar 

  25. Lv, C., Fan, F., Qiang, R., Fei, Y., Yang, J.: Pkuicst at trec 2014 Microblog Track: Feature Extraction for Effective Microblog Search and Adaptive Clustering Algorithms for Ttg. In: TREC (2014)

  26. Martins, F., Magalhães, J., Callan, J.: Barbara made the news: Mining the behavior of crowds for time-aware learning to rank. In: Proceedings of WSDM, pp. 667–676 (2016)

  27. Mehrotra, R., Sanner, S., Buntine, W., Xie, L.: Improving lda topic models for microblogs via tweet pooling and automatic labeling. In: Proceedings of SIGIR, pp. 889–892 (2013)

  28. Miyanishi, T., Seki, K., Uehara, K.: Improving pseudo-relevance feedback via tweet selection. In: Proceedings of CIKM, pp. 439–448 (2013)

  29. Ounis, I., Macdonald, C., Lin, J., Soboroff, I.: Overview of the trec-2011 microblog track. In: TREC, vol. 32 (2011)

  30. Qiang, R., Liang, F., Yang, J.: Exploiting ranking factorization machines for microblog retrieval. In: Proceedings of CIKM, pp. 1783–1788 (2013)

  31. Ramage, D., Dumais, S.T., Liebling, D.J.: Characterizing microblogs with topic models. In: Proceedings of AAAI, vol. 10, p 16 (2010)

  32. Robertson, S.E., Walker, S., Jones, S., Hancock-Beaulieu, M.M., Gatford, M., et al.: Okapi at trec-3. Nist Special Publication 109, 109 (1995)

    Google Scholar 

  33. Severyn, A., Moschitti, A., Tsagkias, M., Berendsen, R., De Rijke, M.: A syntax-aware re-ranker for microblog retrieval. In: Proceedings of SIGIR, pp. 1067–1070 (2014)

  34. Shi, T., Kang, K., Choo, J., Reddy, C.K.: Short-text topic modeling via non-negative matrix factorization enriched with local word-context correlations. In: Proceedings of WWW, pp. 1105–1114 (2018)

  35. Wang, Y., Huang, H., Feng, C.: Query expansion based on a feedback concept model for microblog retrieval. In: Proceedings of WWW, pp. 559–568 (2017)

  36. Weng, J., Lim, E.P., Jiang, J., He, Q.: Twitterrank: finding topic-sensitive influential twitterers. In: Proceedings of WSDM, pp. 261–270 (2010)

  37. Wu, S., Huang, C.: Search result diversification via data fusion. In: Proceedings of SIGIR, pp. 827–830 (2014)

  38. Yan, X., Guo, J., Lan, Y., Cheng, X.: A biterm topic model for short texts. In: Proceedings of WWW, pp. 1445–1456 (2013)

  39. Zhai, C., Lafferty, J.: A study of smoothing methods for language models applied to ad hoc information retrieval. In: Proceedings of SIGIR, pp. 334–342 (2001)

  40. Zhang, Z., Wang, Q., Si, L., Gao, J.: Learning for efficient supervised query expansion via two-stage feature selection. In: Proceedings of SIGIR, pp. 265–274 (2016)

  41. Zhao, W.X., Jiang, J., Weng, J., He, J., Lim, E.P., Yan, H., Li, X.: Comparing twitter and traditional media using topic models. In: Proceedings of ECIR, pp. 338–349 (2011)

    Google Scholar 

  42. Zhong, N., Li, Y., Wu, S.T.: Effective pattern discovery for text mining. IEEE Trans. Knowl. Data Eng. 24(1), 30–44 (2012)

    Article  Google Scholar 

  43. Zhong, N., Liu, J., Yao, Y.: Web intelligence. Springer Science & Business Media (2013)

  44. Zhong, N., Liu, J., Shi, Y., Yao, Y.: An interview with professor raj reddy on Web intelligence (wi) and computational social science (css). Web Intelligence 16 (3), 143–146 (2018)

    Article  Google Scholar 

  45. Zuo, Y., Wu, J., Zhang, H., Lin, H., Wang, F., Xu, K., Xiong, H.: Topic modeling of short texts: A pseudo-document view. In: Proceedings of KDD, pp. 2105–2114 (2016)

Download references

Acknowledgements

This paper was partially supported by Grant DP140103157 from the Australian Research Council (ARC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Albishre.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Computational Social Science as the Ultimate Web Intelligence

Guest Editors: Xiaohui Tao, Juan D. Velasquez, Jiming Liu, and Ning Zhong

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albishre, K., Li, Y., Xu, Y. et al. Query-based unsupervised learning for improving social media search. World Wide Web 23, 1791–1809 (2020). https://doi.org/10.1007/s11280-019-00747-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-019-00747-0

Keywords

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy