Skip to main content

Advertisement

Log in

The anthropogenic stock extended abiotic depletion potential (AADP) as a new parameterisation to model the depletion of abiotic resources

  • LIFE CYCLE IMPACT ASSESSMENT (LCIA)
  • Published:
The International Journal of Life Cycle Assessment Aims and scope Submit manuscript

Abstract

Purpose

Raw material availability is a cause of concern for many industrial sectors. When addressing resource consumption in life cycle assessment (LCA), current characterisation models for depletion of abiotic resources provide characterisation factors based on (surplus) energy, exergy, or extraction–reserve ratios. However, all indicators presently available share a shortcoming as they neglect the fact that large amounts of raw materials can be stored in material cycles within the technosphere. These “anthropogenic stocks” represent a significant source and can change the material availability significantly. With new characterisation factors, resource consumption in LCA will be assessed by taking into account anthropogenic material stocks in addition to the lithospheric stocks. With these characterisation factors, the scarcity of resources should be reflected more realistically.

Materials and methods

This study introduces new characterisation factors—the anthropogenic stock extended abiotic depletion potentials—for the impact category depletion of abiotic resources. The underlying characterisation model is based on the conventional model but substitutes ultimate reserves by resources and adds anthropogenic material stocks to the lithospheric stocks.

Results and discussion

A fictional life cycle inventory, consisting of 1 kg of several metals, was evaluated using different characterisation factors for depletion of abiotic resources. Within this analysis it is revealed that materials with relatively large anthropogenic stocks, e.g. antimony and mercury, contribute comparatively less to abiotic depletion when using the new characterisation factors. Within a normalized comparison of characterisation factors, the impact of anthropogenic stock results in relative differences between −45% and +65%, indicating that anthropogenic stocks are significant.

Conclusions

With the new parameterisation of the model, depletion of abiotic resources can be assessed in a meaningful way, enabling a more realistic material availability analysis within life cycle impact assessment. However, a larger set of characterisation factors and further research are needed to verify the applicability of the concept within LCA practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Angerer G, Erdmann L, Marscheider-Weidemann F, Scharp M, Lüllmann A, Handke V, Marwede M (2009) Rohstoffe für Zukunftstechnologien. Fraunhofer IRB Verlag, Stuttgart

    Google Scholar 

  • Berger M, Finkbeiner M (2011) Correlation analysis of life cycle impact assessment indicators measuring resource use. Int J Life Cycle Assess 16:75–81

    Article  Google Scholar 

  • Berger M, Schneider L, Finkbeiner M (2010) A new characterization model for depletion of abiotic resources—the antrhopogenic stock extended abiotic depletion potential. In: The 9th International Conference on EcoBalance, Tokyo, 9–12 November 2010

  • Bösch ME, Hellweg S, Huijbregts MAJ, Frischknecht R (2007) Applying cumulative exergy demand (CExD) indicators to the ecoinvent database. Int J Life Cycle Assess 12:181–190

    Article  Google Scholar 

  • Brentrup F, Küsters J, Lammel J, Kuhlmann H (2002) Impact assessment of abiotic resource consumption. Int J Life Cycle Asses 7(5):301–307

    Article  Google Scholar 

  • Brunner PH, Rechberger H (2004) Practical handbook of material flow analysis. Lewis Publishers, Boca Raton

    Google Scholar 

  • Butterman WC, Carlin JF (2004) Antimony. Mineral commodity profiles. U.S. Geological Survey

  • Daigo I, Igarashi Y, Matsuno Y, Adachi Y (2007) Accounting for steel stock in Japan. ISIJ Int 47(7):1065–1069

    Article  CAS  Google Scholar 

  • Deutsches Kupferinstitut (2011) Vorkommen und Gewinnung. http://www.kupfer-institut.de/front_frame/frameset.php3?client=1&lang=1&idcat=34&parent=14. Accessed 22 Feb 2011

  • Frondel M, Angerer G, Buchholz P, Grösche P, Huchtemann D, Oberheitman A, Peters J, Vance C, Sartorius C, Röhling S, Wagner M (2006) Trends der Angebots- und Nachfragesituation bei mineralischen Rohstoffen. Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Fraunhofer-Institut für System- und Innovationsforschung, Bundesanstalt für Geowissenschaften und Rohstoffe

  • Gerst MD, Graedel TE (2008) In-use stocks of metals: status and implications. Environ Sci Technol 42(19):7038–7045

    Article  CAS  Google Scholar 

  • Goedkoop M, Spriensma R (2001) The Eco-indicator 99—a damage oriented method for life cycle impact assessment. Product Ecology Consultants (PRe), Amersfoort

    Google Scholar 

  • Graedel TE, McGill R (1986) Degradation of materials in the atmosphere. Environ Sci Technol 20(11):1093–1100

    Article  CAS  Google Scholar 

  • Guinée JB (1995) Development of a methodology for the environmental life-cycle assessment of products; with a case study on margarines. Leiden University

  • Guinée JB, de Bruijn H, van Duin R, Gorree M, Heijungs R, Huijbregts MAJ, Huppes G, Kleijn R, de Koning A, van Oers L, Sleeswijk AW, Suh S, de Haes HA Udo (2001) Life cycle assessment—an operational guide to the ISO standards, part 2b. Centre of Environmental Science—Leiden University (CML), Leiden

    Google Scholar 

  • Hatayama H, Yamada H, Daigo I, Matsuno Y, Adachi Y (2007) Dynamic substance flow analysis of aluminium and its alloying elements. Mater Trans 48(9):2518–2524

    Article  CAS  Google Scholar 

  • Hatayama H, Daigo I, Matsuno Y, Adachi Y (2010) Outlook of the world steel cycle based on the stock and flow dynamics. Environ Sci Technol 44(16):6457–6463

    Article  CAS  Google Scholar 

  • Hill VG, Sehnke ED (2006) Bauxite. In: Kogel JE, Trivedi NC, Barker JM, Krukowski ST (eds) Industrial minerals and rocks. SME, Littleton

    Google Scholar 

  • ISO 14040 (2006) Environmental management—life cycle assessment—principles and framework (ISO 14040:2006). European Committee for Standardisation, Brussels

  • Kapur A, Graedel TE (2006) Copper mines above and below the ground. Environ Sci Technol 40(10):3135–3141

    Article  CAS  Google Scholar 

  • Kleijn R, Huele R, Evd V (2000) Dynamic substance flow analysis: the delaying mechanism of stocks, with the case of PVC in Sweden. Ecol Econ 32:241–254

    Article  Google Scholar 

  • Müller DB, Wang T, Duval B, Graedel TE (2006) Exploring the engine of anthropogenic iron cycles. PNAS 103(44):16111–16116

    Article  Google Scholar 

  • Müller-Wenk R (1998) Depletion of abiotic resources weighted on base of “virtual” impacts of lower grade deposits used in future. Institut für Wirtschaft und Ökologie, St. Gallen

  • PE International (2010) http://www.gabi-software.com. Accessed 20 Dec 2010

  • Rauch JN (2009) Global mapping of Al, Cu, Fe, and Zn in-use stocks and in-ground resources. PNAS 106(45):18920–18925

    Article  CAS  Google Scholar 

  • Schneider L, Berger M, Finkbeiner M (2011) Economic material availability as a new area of protection for life cycle sustainability assessment. In: SETAC Europe 2011, Milano

  • Steen BA (2006) Abiotic resource depletion. Int J Life Cycle Assess 11(Special Issue 1):49–54

    Article  Google Scholar 

  • Stewart M, Weidema B (2005) A consistent framework for assessing the impacts from resource use. Int J Life Cycle Assess 10(4):240–247

    Article  Google Scholar 

  • Tilton JE (2003) On borrowed time? Assessing the threat of mineral depletion. Resources for the Future, Washington

    Google Scholar 

  • UNEP (2010) Metal stocks in society—scientific synthesis. International Panel for Sustainable Resource Management

  • USGS (2007) Cadmium. Mineral commodity summaries. U.S. Geological Survey

  • USGS (2010a) Historical statistics for mineral and material commodities in the United States. U.S. Geological Survey, Washington

    Google Scholar 

  • USGS (2010b) Mineral commodity summaries. U.S. Geological Survey, Washington

    Google Scholar 

  • USGS (2010c) Mineral commodity summaries. Appendix C. U.S. Geological Survey, Washington

    Google Scholar 

  • van Oers L, deKoning A, Guniée JB, Huppes G (2002) Abiotic resource depletion in LCA. Road and Hydraulic Engineering Institute

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Schneider.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schneider, L., Berger, M. & Finkbeiner, M. The anthropogenic stock extended abiotic depletion potential (AADP) as a new parameterisation to model the depletion of abiotic resources. Int J Life Cycle Assess 16, 929–936 (2011). https://doi.org/10.1007/s11367-011-0313-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11367-011-0313-7

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy