Skip to main content
Log in

Genesis of ultra-deep dolostone and controlling factors of large-scale reservoir: A case study of the Sinian Dengying Formation and the Cambrian Longwangmiao Formation in the Sichuan Basin

  • Article
  • Published:
Science China Earth Sciences Aims and scope Submit manuscript

Abstract

This paper investigates the origin of ultra-deep dolostone and the factors influencing large-scale dolostone reservoirs, focusing on the Sinian Dengying Formation and the Cambrian Longwangmiao Formation in the Sichuan Basin. The study involves petrology, microscale X-ray diffraction, trace element analysis, and C-O-Sr-Mg isotope experiments to provide a detailed analysis. The research findings indicate that the Dengying and Longwangmiao formations comprise six types of matrix dolostone and four types of cement. The Dengying Formation, which developed under a sedimentary background of a restricted platform, contains special microbial and microcrystalline dolostones. The dolomite grains are small (<30 µm) and have a low order degree (Min=0.55), with large unit cell parameters and an extremely high Na content (Max=788 ppm). The 87Sr/86Sr value of the dolostone is consistent with contemporaneous seawater, while the δ13C and δ18O values are lower than those of the contemporaneous seawater. The δ26Mg value is small (Min=−2.31‰). Powder crystal, fine-crystalline, and calcite dolostones with coarser and more ordered crystals exhibit similar δ13C and 87Sr/86Sr values to microbial and microcrystalline dolostone. During the sedimentary period of the Dengying Formation, ancient marine conditions were favorable for microbial survival. Microorganisms induced the direct precipitation of primary dolomite in seawater, forming microbial and microcrystalline dolostones during the seawater diagenesis period. During the subsequent diagenesis period, dolostones underwent the effects of dissolution-recrystallization, structures, and hydrothermal fluids. This resulted in the formation of dolostone with coarser crystals, a higher degree of order, and various types of cement. The Longwangmiao Formation was developed in an inter-platform beach characterized by special particle dolostone. The particle dolostone has a large grain size (>30 µm), high order degree (Min=0.7), small unit cell parameters, high Na content (Max=432 ppm), and low Fe and Mn content. The δ26Mg and δ13C values are consistent with the contemporaneous seawater, while the δ18O and 87Sr/86Sr values are higher than those of the contemporaneous seawater. There is mutual coupling between multiple-period varying δ26Mg values and sedimentary cycles. The dolostone in the Longwangmiao Formation resulted from the metasomatism of limestone by evaporated seawater. The thickness and scale of the dolostone in the Longwangmiao Formation are controlled by the periodic changes in sea level. The period of dolostone development from the Sinian to the Cambrian coincides with the transition from Rodinia’s breakup to Gondwana’s convergence. These events have resulted in vastly different marine properties, microbial activities, and sedimentary climate backgrounds between the Sinian and the Cambrian. These differences may be the fundamental factors leading to the distinct origins of dolostone formed in the two periods. The distribution of sedimentary facies and deep tectonic activities in the Sichuan Basin from the Sinian to the Cambrian is influenced by the breakup and convergence of the supercontinent. This process plays a key role in determining the distribution, pore formation, preservation, and adjustment mechanisms of ultra-deep dolostone reservoirs. To effectively analyze the genesis and reservoir mechanisms of ultra-deep dolostone in other regions or layers, especially during the specific period of supercontinent breakup and convergence, it is crucial to consider the comprehensive characteristics of seawater properties, microbial activities, sedimentary environment, and fault systems driven by tectonic activities. This can help predict the distribution of high-quality and large-scale ultra-deep dolostone reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams A, Diamond L W, Aschwanden L. 2019. Dolomitization by hypersaline reflux into dense groundwaters as revealed by vertical trends in strontium and oxygen isotopes: Upper Muschelkalk, Switzerland. Sedimentology, 66: 362–390

    Article  CAS  Google Scholar 

  • Baker P A, Kastner M. 1981. Constraints on the formation of sedimentary dolomite. Science, 213: 214–216

    Article  CAS  Google Scholar 

  • Bao Z D, Ji H C, Liang T, Wei M Y, Shi Y Q, Li Z F, Lu K, Xiang P F, Zhang H, Yan R, Guo Y X, Li Z L, Wan P, Yang Z B, Ma X D, Liu R, Liu C X, Zhong X L, Guo X Q, Cai Z X, Zhang S C. 2019. Primary dolostones of the Meso-Neoproterozoic: Cases on typical platforms in China (in Chinese). J Palaeogeogr, 21: 869–884

    CAS  Google Scholar 

  • Beinlich A, Mavromatis V, Austrheim H, Oelkers E H. 2014. Inter-mineral Mg isotope fractionation during hydrothermal ultramafic rock alteration—Implications for the global Mg-cycle. Earth Planet Sci Lett, 392: 166–176

    Article  CAS  Google Scholar 

  • Bi D J, Zhai S K, Zhang D J, Liu X F, Liu X Y, Jiang L J, Zhang A B. 2018. Constraints offluid inclusions and C, O isotopic compositions on the origin ofthe dolomites in the Xisha Islands, South China Sea. Chem Geol, 493: 504–517

    Article  CAS  Google Scholar 

  • Bialik O M, Wang X M, Zhao S G, Waldmann N D, Frank R, Li W Q. 2018. Mg isotope response to dolomitization in hinterland-attached carbonate platforms: Outlook of δ26Mg as a tracer of basin restriction and seawater Mg/Ca ratio. Geochim Cosmochim Acta, 235: 189–207

    Article  CAS  Google Scholar 

  • Bontognali T R R, Vasconcelos C, Warthmann R J, Bernasconi S M, Dupraz C, Strohmenger C J, McKenzie J A. 2010. Dolomite formation within microbial mats in the coastal sabkha of Abu Dhabi (United Arab Emirates). Sedimentology, 57: 824–844

    Article  CAS  Google Scholar 

  • Cai C F, Liu D W, Hu Y J, Huang T Y, Jiang Z W, Xu C L. 2023. Interlinked marine cycles of methane, manganese, and sulfate in the post-Marinoan Doushantuo cap dolostone. Geochim Cosmochim Acta, 346: 245–258

    Article  CAS  Google Scholar 

  • Cawood P A, Strachan R A, Pisarevsky S A, Gladkochub D P, Murphy J B. 2016. Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles. Earth Planet Sci Lett, 449: 118–126

    Article  CAS  Google Scholar 

  • Chakhmouradian A R, Reguir E P, Couëslan C, Yang P. 2016. Calcite and dolomite in intrusive carbonatites. II. Trace-element variations. Miner Petrol, 110: 361–377

    Article  CAS  Google Scholar 

  • Chang B, Li C, Liu D, Foster I, Tripati A, Lloyd M K, Maradiaga I, Luo G, An Z, She Z, Xie S, Tong J, Huang J, Algeo T J, Lyons T W, Immenhauser A. 2020. Massive formation of early diagenetic dolomite in the Ediacaran ocean: Constraints on the “dolomite problem”. Proc Natl Acad Sci USA, 117: 14005–14014

    Article  CAS  Google Scholar 

  • Chen D Z, Qian Y X. 2017. Deep or super-deep dolostone reservoirs: Opportunities and challenges (in Chinese). J Palaeogeogr, 19: 187–196

    CAS  Google Scholar 

  • Chen Y N, Shen A J, Pan L Y, Zhang J, Wang X F. 2017. Features, origin and distribution of microbial dolomite reservoirs: A case study of 4th Member of Sinian Dengying Formation in Sichuan Basin, SW China. Petrol Explor Develop, 44: 704–715

    Article  CAS  Google Scholar 

  • Cui X Z, Jiang X S, Wang J, Wang X C, Zhuo J W, Deng Q, Liao S Y, Wu H, Jiang Z F, Wei Y N. 2015. Mid-Neoproterozoic diabase dykes from Xide in the western Yangtze Block, South China: New evidence for continental rifting related to the breakup of Rodinia supercontinent. Precambrian Res, 268: 339–356

    Article  Google Scholar 

  • Deng S C, Dong H L, Lv G, Jiang H C, Yu B S, Bishop M E. 2010. Microbial dolomite precipitation using sulfate reducing and halophilic bacteria: Results from Qinghai Lake, Tibetan Plateau, NW China. Chem Geol, 278: 151–159

    Article  CAS  Google Scholar 

  • Du J H, Zou C N, Xu C C, He H Q, Shen P, Yang Y M, Li Y L, Wei G Q, Wang Z C, Yang Y. 2014. Theoretical and technical innovations in strategic discovery of a giant gas field in Cambrian Longwangmiao Formation of central Sichuan paleo-uplift, Sichuan Basin. Pet Explor Dev, 41: 294–305

    Article  Google Scholar 

  • Ehrenberg S N, Eberli G P, Keramati M, Moallemi S A. 2006. Porosity-permeability relationships in interlayered limestone-dolostone reservoirs. AAPG Bull, 90: 91–114

    Article  Google Scholar 

  • Ehrenberg S N, Nadeau P H, Steen Ø. 2009. Petroleum reservoir porosity versus depth: Influence of geological age. AAPG Bull, 93: 1281–1296

    Article  Google Scholar 

  • Feng M Y, Qiang Z T, Shen P, Zhang J, Tao Y Z, Xia M L. 2016. Evidences for hydrothermal dolomite of Sinian Dengying Formationin Gaoshiti-Moxi area, Sichuan Basin. Acta Petrol Sin, 37: 587–598

    CAS  Google Scholar 

  • Feng M Y, Wu P C, Qiang Z T, Liu X H, Duan Y, Xia M L. 2017. Hydrothermal dolomite reservoir in the Precambrian Dengying Formation ofcentral Sichuan Basin, southwestern China. Mar Pet Geol, 82: 206–219

    Article  CAS  Google Scholar 

  • Fernández-Remolar D C, Preston L J, Sánchez-Román M, Izawa M R M, Huang L, Southam G, Banerjee N R, Osinski G R, Flemming R, Gómez-Ortíz D, Prieto Ballesteros O, Rodriguez N, Amils R, Darby Dyar M. 2012. Carbonate precipitation under bulk acidic conditions as a potential biosignature for searching life on Mars. Earth Planet Sci Lett, 351–352: 13–26

    Article  Google Scholar 

  • Findlater G, Shelton A, Rolin T, Andrews J. 2014. Sodium and strontium in mollusc shells: Preservation, palaeosalinity and palaeotemperature of the Middle Pleistocene ofeastern England. Proc Geologists Assoc, 125: 14–19

    Article  Google Scholar 

  • Foster G L, Pogge von Strandmann P A E, Rae J W B. 2010. Boron and magnesium isotopic composition of seawater. Geochem Geophys Geosyst, 11: 1

    Article  Google Scholar 

  • Galy A, Yoffe O, Janney P E, Williams R W, Cloquet C, Alard O, Halicz L, Wadhwa M, Hutcheon I D, Ramon E, Carignan J. 2003. Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium-isotope-ratio measurements. J Anal At Spectrom, 18: 1352–1356

    Article  CAS  Google Scholar 

  • Gregg J M, Bish D L, Kaczmarek S E, Machel H G. 2015. Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: A review. Sedimentology, 62: 1749–1769

    Article  CAS  Google Scholar 

  • Gu Z D, Wang Z C. 2014. The discovery of Neoproterozoic extensional structures and its significance for gas exploration in the Central Sichuan Block, Sichuan Basin, South China. Sci China Earth Sci, 57: 2758–2768

    Article  CAS  Google Scholar 

  • Guan S W, Wu L, Ren R, Zhu G Y, Peng Z Q, Zhao W T, Li J. 2017. Distribution and petroleum prospect of Precambrian rifts in the main cratons, China. Acta Petrol Sin, 38: 9–22

    CAS  Google Scholar 

  • Guo Z Q, Zhao W Z, Wei G Q, Wen L, Xie W R, Xie Z Y, Yang C L, Wang X B. 2022. Characteristics, evolution, and formation of pressure in the Sinian-Cambrian gas reservoirs of the Anyue gas field, Sichuan Basin, China. AAPG Bull, 106: 1939–1973

    Article  Google Scholar 

  • Halley R B, Schmoker J W. 1983. High-porosity Cenozoic carbonate rocks of south Florida: Progressive loss of porosity with depth. AAPG Bull, 67: 191–200

    Google Scholar 

  • Halverson G P, Dudás F Ö, Maloof A C, Bowring S A. 2007. Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater. Palaeogeogr Palaeoclimatol Palaeoecol, 256: 103–129

    Article  Google Scholar 

  • Heasley E C, Worden R H, Hendry J P. 2000. Cement distribution in a carbonate reservoir: Recognition of a palaeo oil-water contact and its relationship to reservoir quality in the Humbly Grove field, onshore, UK. Mar Pet Geol, 17: 639–654

    Article  CAS  Google Scholar 

  • Higgins J A, Schrag D P. 2015. The Mg isotopic composition ofCenozoic seawater—Evidence for a link between Mg-clays, seawater Mg/Ca, and climate. Earth Planet Sci Lett, 416: 73–81

    Article  CAS  Google Scholar 

  • Higgins J A, Blättler C L, Lundstrom E A, Santiago-Ramos D P, Akhtar A A, Crüger Ahm A S, Bialik O, Holmden C, Bradbury H, Murray S T, Swart P K. 2018. Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments. Geochim Cosmochim Acta, 220: 512–534

    Article  CAS  Google Scholar 

  • Hu Y J, Cai C F, Liu D W, Pederson C L, Jiang L, Shen A J, Immenhauser A. 2020. Formation, diagenesis and palaeoenvironmental significance of upper Ediacaran fibrous dolomite cements. Sedimentology, 67: 1161–1187

    Article  CAS  Google Scholar 

  • Hu Y J, Cai C F, Li Y, Liu D W, Wei T Y, Wang D W, Jiang L, Ma R, Shi S Y, Immenhauser A. 2023. Sedimentary and diagenetic archive of a deeply buried, upper Ediacaran microbialite reservoir, southwestern China. AAPG Bull, 107: 387–412

    Article  Google Scholar 

  • Hu Z Q, Gao Z Q, Liu Z B, Jiang W, Wei D, Li Y. 2022. Characteristics of Cambrian tectonic-lithofacies paleogeography in China and the controls on hydrocarbons. J Pet Sci Eng, 214: 110473

    Article  CAS  Google Scholar 

  • Hu Z Y, Hu W X, Liu C, Sun F N, Liu Y L, Li W Q. 2019. Conservative behavior of Mg isotopes in massive dolostones: From diagenesis to hydrothermal reworking. Sediment Geol, 381: 65–75

    Article  CAS  Google Scholar 

  • Huang K J, Shen B, Lang X G, Tang W B, Peng Y, Ke S, Kaufman A J, Ma H R, Li F B. 2015. Magnesium isotopic compositions of the Mesoproterozoic dolostones: Implications for Mg isotopic systematics of marine carbonates. Geochim Cosmochim Acta, 164: 333–351

    Article  CAS  Google Scholar 

  • Jacobson A D, Zhang Z F, Lundstrom C, Huang F. 2010. Behavior of Mg isotopes during dedolomitization in the Madison Aquifer, South Dakota. Earth Planet Sci Lett, 297: 446–452

    Article  CAS  Google Scholar 

  • Jia C Z, Zhang S C. 2023. The formation ofmarine ultra-deep petroleum in China. Acta Geol Sin, 97: 2775–2801

    Google Scholar 

  • Jin Z K, Yang Y X, Yu K H, Wang Z, Dong C C. 2012. Genetic types of dolostones in the Cambrian, eastern Tarim Basin (in Chinese). J Palaeogeogr, 14: 747–756

    CAS  Google Scholar 

  • Kenward P A, Fowle D A, Goldstein R H, Ueshima M, González L A, Roberts J A. 2013. Ordered low-temperature dolomite mediated by carboxyl-group density of microbial cell walls. AAPG Bull, 97: 2113–2125

    Article  CAS  Google Scholar 

  • Kretz R. 1982. A model for the distribution of trace elements between calcite and dolomite. Geochim Cosmochim Acta, 46: 1979–1981

    Article  CAS  Google Scholar 

  • Land L S. 1985. The origin of massive dolomite. J Geol Education, 33: 112–125

    CAS  Google Scholar 

  • Land L S. 1998. Failure to Precipitate dolomite at 25°C from dilute solution despite 1000-fold oversaturation after 32 years. Aquat GeoChem, 4: 361–368

    Article  Google Scholar 

  • Li J H, Wang H H, Li W B, Zhou X B. 2014. Discussion on global tectonics evolution from plate reconstruction in Phanerozoic. Acta Petrol Sin, 35: 207–218

    Google Scholar 

  • Li J Z, Tao X W, Bai B, Huang S P, Jiang Q C, Zhao Z Y, Chen Y Y, Ma D B, Zhang L P, Li N X, Song W. 2021. Geological conditions, reservoir evolution and favorable exploration directions of marine ultra-deep oil and gas in China. Pet Explor Dev, 48: 60–79

    Article  Google Scholar 

  • Li W Q, Beard B L, Li C X, Xu H F, Johnson C M. 2015. Experimental calibration of Mg isotope fractionation between dolomite and aqueous solution and its geological implications. Geochim Cosmochim Acta, 157: 164–181

    Article  CAS  Google Scholar 

  • Li W Q, Bialik O M, Wang X M, Yang T, Hu Z Y, Huang Q Y, Zhao S G, Waldmann N D. 2019. Effects of early diagenesis on Mg isotopes in dolomite: The roles of Mn(IV)-reduction and recrystallization. Geochim Cosmochim Acta, 250: 1–17

    Article  CAS  Google Scholar 

  • Li X, Zhu G Y, Li T T, Zhou L, Wu Y X, Tian L J. 2022. Mg isotopic characteristies and genetie mechanism of dolomite of Cambrian Xixiangchi Formation in central Sichuan Basin. Acta Petrol Sin, 43: 1585–1603

    Google Scholar 

  • Li X, Zhu G Y, Li T T, Zhou L, Wu Y X, Shen B, Ning M. 2023a. Conservative behavior of Mg isotopes in dolomite during diagenesis and hydrothermal alteration: A case study in the Lower Cambrian Qiulitage Formation, Gucheng area, Tarim Basin. Appl Geochem, 148: 105540

    Article  CAS  Google Scholar 

  • Li X, Zhu G Y, Chen Z Y, Li T T, Wang S, Ai Y F, Zhang Y, Tian L J. 2023b. Mg isotopic geochemistry and origin of Early Ordovician dolomite and implications for the formation of high-quality reservoir in the Tabei area, Tarim Basin, NW China. J Asian Earth Sci, 255: 105757

    Article  Google Scholar 

  • Li X, Zhu G Y, Li T T, Ai Y F, Zhang Y, Wang S, Chen Z Y, Tian L J. 2023c. Genesisof dolostone of the Yingshan Formationin Tarim Basin and Mg isotope evidence. Earth Sci Front, 30: 352–375

    CAS  Google Scholar 

  • Li Y, Qin S F, Wang Y P, Holland G, Zhou Z. 2020. Tracing interaction between hydrocarbon and groundwater systems with isotope signatures preserved in the Anyue gas field, central Sichuan Basin, China. Geochim Cosmochim Acta, 274: 261–285

    Article  CAS  Google Scholar 

  • Li Z X, Zhang L, Powell C M A. 1995. South China in Rodinia: Part of the missing link between Australia-East Antarctica and Laurentia? Geology, 23: 407

    Article  Google Scholar 

  • Liu D W, Cai C F, Hu Y J, Jiang L, Peng Y Y, Yu R, Qin Q. 2020. Multistage dolomitization process of deep burial dolostones and its influence on pore evolution: A case study of Longwangmiao Formation in the lower Cambrian of central Sichuan Basin. J China Univ Mining Technol, 49: 1150–1165

    Google Scholar 

  • Liu D W, Cai C F, Hu Y J, Peng Y Y, Jiang L. 2021. Multistage dolomitization and formation ofultra-deep Lower Cambrian Longwangmiao Formation reservoir in central Sichuan Basin, China. Mar Pet Geol, 123: 104752

    Article  CAS  Google Scholar 

  • Liu S B, Jin S D, Liu Y, Chen A Q. 2022. Astronomical forced sequence infill of Early Cambrian Qiongzhusi organic-rich shale of Sichuan Basin, South China. Sediment Geol, 440: 106261

    Article  CAS  Google Scholar 

  • Lucia F J. 2004. Origin and petrophysics ofdolostone pore space. Geol Soc Lond Spec Publ, 235: 141–155

    Article  CAS  Google Scholar 

  • Lukoczki G, Haas J, Gregg J M, Machel H G, Kele S, John C M. 2020. Early dolomitization and partial burial recrystallization: A case study of Middle Triassic peritidal dolomites in the Villany Hills (SW Hungary) using petrography, carbon, oxygen, strontium and clumped isotope data. Int J Earth Sci-Geol Rund, 109: 1051–1070

    Article  CAS  Google Scholar 

  • Ma X H, Yang Y, Wen L, Luo B. 2019. Distribution and exploration direction of medium- and large-sized marine carbonate gas fields in Sichuan Basin, SW China. Pet Explor Dev, 46: 1–15

    Article  Google Scholar 

  • Machel H G. 1997. Recrystallization versus neomorphism, and the concept of ‘significant recrystallization’ in dolomite research. Sediment Geol, 113: 161–168

    Article  CAS  Google Scholar 

  • Machel H G. 2004. Concepts and models of dolomitization: A critical reappraisal. Geol Soc Lond Spec Publ, 235: 7–63

    Article  CAS  Google Scholar 

  • Mavromatis V, Meister P, Oelkers E H. 2014. Using stable Mg isotopes to distinguish dolomite formation mechanisms: A case study from the Peru Margin. Chem Geol, 385: 84–91

    Article  CAS  Google Scholar 

  • McCormack J, Bontognali T R R, Immenhauser A, Kwiecien O. 2018. Controls on cyclic formation of Quaternary early diagenetic dolomite. Geophys Res Lett, 45: 3625–3634

    Article  Google Scholar 

  • Meister P, Gutjahr M, Frank M, Bernasconi S M, Vasconcelos C, McKenzie J A. 2011. Dolomite formation within the methanogenic zone induced by tectonically driven fluids in the Peru accretionary prism. Geology, 39: 563–566

    Article  CAS  Google Scholar 

  • Merlini M, Cerantola V, Gatta G D, Gemmi M, Hanfland M, Kupenko I, Lotti P, Müller H, Zhang L. 2017. Dolomite-IV: Candidate structure for a carbonate in the Earth’s lower mantle. Am Mineral, 102: 1763–1766

    Article  Google Scholar 

  • Moore T S, Murray RW, Kurtz A C, Schrag D P. 2004. Anaerobic methane oxidation and the formation of dolomite. Earth Planet Sci Lett, 229: 141–154

    Article  CAS  Google Scholar 

  • Nance R D, Murphy J B. 2013. Origins ofthe supercontinent cycle. Geosci Front, 4: 439–448

    Article  Google Scholar 

  • Nance R D, Murphy J B, Santosh M. 2014. The supercontinent cycle: A retrospective essay. Gondwana Res, 25: 4–29

    Article  Google Scholar 

  • Ning M, Lang X G, Huang K J, Li C, Huang T Z, Yuan H L, Xing C C, Yang R Y, Shen B. 2020. Towards understanding the origin of massive dolostones. Earth Planet Sci Lett, 545: 116403

    Article  CAS  Google Scholar 

  • Peng B, Li Z X, Li G R, Liu C L, Zhu S F, Zhang W, Zuo Y, Guo Y C, Wei X J. 2018. Multiple dolomitization and fluid flow events in the Precambrian Dengying Formation of Sichuan Basin, Southwestern China. Acta Geol Sin-Engl Ed, 92: 311–332

    Article  Google Scholar 

  • Peng Y, Shen B, Lang X G, Huang K J, Chen J T, Yan Z, Tang W B, Ke S, Ma H R, Li F B. 2016. Constraining dolomitization by Mg isotopes: A case study from partially dolomitized limestones of the middle Cambrian Xuzhuang Formation, North China. Geochem Geophys Geosyst, 17: 1109–1129

    Article  CAS  Google Scholar 

  • Pina C M, Pimentel C, Crespo Á. 2020. Dolomite cation order in the geological record. Chem Geol, 547: 119667

    Article  CAS  Google Scholar 

  • Pinilla C, Blanchard M, Balan E, Natarajan S K, Vuilleumier R, Mauri F. 2015. Equilibrium magnesium isotope fractionation between aqueous Mg2+ and carbonate minerals: Insights from path integral molecular dynamics. Geochim Cosmochim Acta, 163: 126–139

    Article  CAS  Google Scholar 

  • Qiao Z F, Yu Z, She M, Pan L Y, Zhang T F, Li W Z, Shen A J. 2023. Progresses on ancient ultra-deeply buriedmarine carbonate reservoir in China (in Chinese). J Palaeogeogr, 25: 1257–1276

    CAS  Google Scholar 

  • Qiu X, Wang H M, Yao Y C, Duan Y. 2017. High salinity facilitates dolomite precipitation mediated by Haloferax volcanii DS52. Earth Planet Sci Lett, 472: 197–205

    Article  CAS  Google Scholar 

  • Roberts J A, Kenward P A, Fowle D A, Goldstein R H, González L A, Moore D S. 2013. Surface chemistry allows for abiotic precipitation of dolomite at low temperature. Proc Natl Acad Sci USA, 110: 14540–14545

    Article  CAS  Google Scholar 

  • Roest-Ellis S, Strauss J V, Tosca N J. 2021. Experimental constraints on nonskeletal CaCO3 precipitation from Proterozoic seawater. Geology, 49: 561–565

    Article  CAS  Google Scholar 

  • Rott C M, Qing H R. 2013. Early dolomitization and recrystallization in shallow marine carbonates, Mississippian Alida Beds, Williston Basin (Canada): Evidence from petrography and isotope geochemistry. J Sediment Res, 83: 928–941

    Article  CAS  Google Scholar 

  • Schmoker J W, Halley R B. 1982. Carbonate porosity versus depth: A predictable relation for south Florida. AAPG Bull, 66: 2561–2570

    Google Scholar 

  • Shan X Q, Zhang J, Zhang B M, Liu J J, Zhou H, Wang Y J, Fu Z W. 2016. Dolomite karst reservoir characteristies and dissolution evidences of Sinian Dengying Formation, Sichuan Basin. Acta Petrol Sin, 37: 17–29

    Google Scholar 

  • Shen A J, Hu A P, Cheng T, Liang F, Pan W Q, Feng Y X, Zhao J X. 2019. Laser ablation in situ U-Pb dating and its application to diagenesis-porosity evolution of carbonate reservoirs. Pet Explor Dev, 46: 1127–1140

    Article  Google Scholar 

  • Shen A J, Luo X Y, Hu A P, Qiao Z F, Zhang J. 2022. Dolomitization evolution and its effects on hydrocarbon reservoir formation from penecontemporaneous to deep burial environment. Pet Explor Dev, 49: 731–743

    Article  Google Scholar 

  • Sibley D F, Gregg J M. 1987. Classification of dolomite rock textures. J Sediment Res, 57: 967–975

    Google Scholar 

  • Su Z T, Yu W, Liao H H, Hu S L, Liu G Q, Ma H. 2022. Research progress and development trend of the genesis of dolomite reservoirs. Nat Gas Geosci, 33: 1175–1188

    Google Scholar 

  • Sun D S, Li S J, Li J J, Li Y Q, Yang T B, Feng X K, Li H L, Han Z Z, He Z L. 2022. Insights from a comparison of hydrocarbon accumulation conditions of Sinian-Cambrian between the Tarim and the Sichuan Basins. Acta Geol Sin, 96: 249–264

    Google Scholar 

  • Sun L D, Zou C N, Zhu R K, Zhang Y H, Zhang S C, Zhang B M, Zhu G Y, Gao Z Y. 2013. Formation, distribution and potential of deep hydrocarbon resources in China. Pet Explor Dev, 40: 687–695

    Article  Google Scholar 

  • Sun S Q. 1995. Dolomite reservoirs: Porosity evolution and reservoir characteristics. AAPG Bull, 79: 186–204

    CAS  Google Scholar 

  • Teng F Z. 2017. Magnesium isotope geochemistry. Rev Mineral Geochem, 82: 219–287

    Article  CAS  Google Scholar 

  • Teng F Z, Li W Y, Ke S, Yang W, Liu S A, Sedaghatpour F, Wang S J, Huang K J, Hu Y, Ling M X, Xiao Y, Liu X M, Li X W, Gu H O, Sio C K, Wallace D A, Su B X, Zhao L, Chamberlin J, Harrington M, Brewer A. 2015. Magnesium isotopic compositions of international geological reference materials. Geostand Geoanal Res, 39: 329–339

    Article  CAS  Google Scholar 

  • van Lith Y, Vasconcelos C, Warthmann R, Martins J C F, McKenzie J A. 2002. Bacterial sulfate reduction and salinity: Two controls on dolomite precipitation in Lagoa Vermelha and Brejo do Espinho (Brazil). Hydrobiologia, 485: 35–49

    Article  CAS  Google Scholar 

  • van Smeerdijk Hood A, Wallace M W. 2018. Neoproterozoic marine carbonates and their paleoceanographic significance. Glob Planet Change, 160: 28–45

    Article  Google Scholar 

  • Vasconcelos C, McKenzie J A. 1997. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil). J Sediment Res, 67: 378–390

    CAS  Google Scholar 

  • Vasconcelos C, McKenzie J A, Bernasconi S, Grujic D, Tiens A J. 1995. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature, 377: 220–222

    Article  CAS  Google Scholar 

  • Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden G A F, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha O G, Strauss H. 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol, 161: 59–88

    Article  CAS  Google Scholar 

  • Walker G, Abumere O E, Kamaluddin B. 1989. Luminescence spectroscopy of Mn2+ rock-forming carbonates. Mineral Mag, 53: 201–211

    Article  CAS  Google Scholar 

  • Wallace M W, van Smeerdijk H A, Fayle J, Hordern E S, O’Hare T F. 2019. Neoproterozoic marine dolomite hardgrounds and their relationship to cap dolomites. Precambrian Res, 328: 269–286

    Article  CAS  Google Scholar 

  • Wang G Z, Liu S G, Li N, Wang D, Gao Y. 2014. Formation and preservation mechanism ofhigh quality reservoir in deep burial dolomite in the Dengying Formation on the northern margin of the Sichuan Basin. Acta Petrol Sin, 30: 667–678

    Google Scholar 

  • Wang J B, He Z L, Zhu D Y, Liu Q Y, Ding Q, Li S J, Zhang D W. 2020. Petrological and geochemical characteristics of the botryoidal dolomite of Dengying Formation in the Yangtze Craton, South China: Constraints on terminal Ediacaran “dolomite seas”. Sediment Geol, 406: 105722

    Article  CAS  Google Scholar 

  • Wang J Y, Jin Z K. 2022. Formation mechanism, identification markers, questions and regarding microbial dolomite. Acta Sedimentol Sin, 40: 350–359

    Google Scholar 

  • Wang J Y, Tarhan L G, Jacobson A D, Oehlert A M, Planavsky N J. 2023. The evolution of the marine carbonate factory. Nature, 615: 265–269

    Article  CAS  Google Scholar 

  • Wang P, Wang G W, Chen Y Q H F, Yang X Z, Hu F J, Zhou L, Yi Y, Yang G, Wang X X, Cong F Y. 2023. Formation and preservation of ultra-deep high-quality dolomite reservoirs under the coupling of sedimentation and diagenesis in the central Tarim Basin, NW China. Mar Pet Geol, 149: 106084

    Article  Google Scholar 

  • Wang Y, Shi Z J, Qing H R, Tian Y M, Gong X X. 2021a. Petrological characteristics, geochemical characteristics, and dolomite model of the lower Cambrian Longwangmiao Formation in the periphery of the Sichuan Basin, China. J Pet Sci Eng, 202: 108432

    Article  CAS  Google Scholar 

  • Wang Y, Shi Z J, Meng X P, Liu P J, Tian Y M, Qing H R. 2021b. Burial dolomitization and mixed water dolomitization in Longwangmiao Formation, southeastern Sichuan Basin. Acta Sedimentol Sin, 39: 1517–1531

    Google Scholar 

  • Warren J K. 2021. Evaporitedeposits. In: Alderton D, Elias S A. eds. Encyclopedia of Geology. 2nd ed. Oxford: Academic Press. 945–977

    Google Scholar 

  • Warren J. 2000. Dolomite: Occurrence, evolution and economically important associations. Earth-Sci Rev, 52: 1–81

    Article  CAS  Google Scholar 

  • Wei G Q, Chen G S, Du S M, Zhang L, Yang W. 2008. Petroleum systems of the oldest gas field in China: Neoproterozoic gas pools in the Weiyuan gas field, Sichuan Basin. Mar Pet Geol, 25: 371–386

    Article  CAS  Google Scholar 

  • Weyl P K. 1960. Porosity through dolomitization: Conservation-of-mass requirements. J Sediment Res, 30: 85–90

    CAS  Google Scholar 

  • Wood R A, Zhuravlev A Y, Sukhov S S, Zhu M Y, Zhao F C. 2017. Demise of Ediacaran dolomitic seas marks widespread biomineralization on the Siberian Platform. Geology, 45: 27–30

    Article  Google Scholar 

  • Xiao Q, Xia Z C, She Z B, Papineau D, Luo G M, Chang B, Liu D, Mason R, Li M T, Li C. 2024. Ubiquitous occurrence of organogenic dolomite in a late Ediacaran limestone-dominated succession from the Eastern Yangtze Gorges area of South China. Precambrian Res, 400: 107269

    Article  CAS  Google Scholar 

  • Yang F X, Wang X Z, Yang Y M, Li X Y, Jiang N, Xie J R, Luo W J. 2015. Diagenesis of the dolomite reservoir in Lower Cambrian Longwangmiao Formation in central Sichuan Basin. Geol Sci Technol Inform, 34: 35–41

    CAS  Google Scholar 

  • Yang L L, Zhu G Y, Li X W, Liu K Y, Yu L J, Gao Z Y. 2022. Influence of crystal nucleus and lattice defects on dolomite growth: Geological implications for carbonate reservoirs. Chem Geol, 587: 120631

    Article  CAS  Google Scholar 

  • Yang W Q, Liu Z, Chen H R, Lan C J, Xu Z H, Lu C J, Zou H Y. 2020a. Depositional combination of carbonate grain banks of the Lower Cambrian Longwangmiao Formation in Sichuan Basin and its control on reservoirs. J Palaeogeogr, 22: 251–265

    Google Scholar 

  • Yang W, Wei G Q, Zhao R R, Liu M C, Jin H, Zhao Z A, Shen J H. 2014. Characteristics and distribution of karst reservoirs in the Sinian Dengying Fm, Sichuan Basin. Nat Gas Indust, 34: 55–60

    CAS  Google Scholar 

  • Yang W, Wei G Q, Xie W R, Ma Y S, Jin H, Su N, Wu S J. 2020b. Main controlling factors and genetic mechanism for the development of high qualityreservoirs in Longwangmiao Formation, central Sichuan Basin. Acta Petrol Sin, 41: 421–432

    Google Scholar 

  • Zempolich W G, Wilkinson B H, Lohmann K C. 1988. Diagenesis of Late Proterozoic carbonates: The beck spring dolomite ofEastern California. J Sediment Res, 58: 656–672

    CAS  Google Scholar 

  • Zhang G W, Guo A L, Wang Y J, Li S Z, Dong Y P, Liu S F, He D F, Cheng S Y, Lu R K, Yao A P. 2013. Tectonics of South China continent and its implications. Sci China Earth Sci, 56: 1804–1828

    Article  Google Scholar 

  • Zhang J, Jones B, Zhang J Y. 2014. Crystal structure of replacement dolomite with different buried depths and its significance to study of dolomite reservoir. China Petrol Explor, 19: 21–28

    CAS  Google Scholar 

  • Zhang M L, Guo Z H, Zhang L, Fu J, Zheng G Q, Xie W R, Ma S Y. 2021. Characteristics of and main factors controlling the karst shoal reservoir of the lower Cambrian Longwangmiao Formation in the Anyue gas field, central Sichuan Basin, China. Earth Sci Front, 28: 235–248

    CAS  Google Scholar 

  • Zhang P W, Liu G D, Cai C F, Li M J, Chen R Q, Gao P, Xu C L, Wan W C, Zhang Y Y, Jiang M Y. 2019. Alteration of solid bitumen by hydrothermal heating and thermochemical sulfate reduction in the Ediacaran and Cambrian dolomite reservoirs in the Central Sichuan Basin, SW China. Precambrian Res, 321: 277–302

    Article  CAS  Google Scholar 

  • Zhang P, Huang K J, Luo M, Cai Y P, Bao Z A. 2022. Constraining the terminal Ediacaran seawater chemistry by Mg isotopes in dolostones from the Yangtze Platform, South China. Precambrian Res, 377: 106700

    Article  CAS  Google Scholar 

  • Zhao B S, Long X P, Luo J, Dong Y P, Lan C Y, Wang J Y, Wu B. 2022. Late Neoproterozoic to early Paleozoic paleogeographic position of the Yangtze block and the change of tectonic setting in its northwestern margin: Evidence from detrital zircon U-Pb ages and Hf isotopes of sedimentary rocks. GSA Bull, 134: 335–347

    Article  CAS  Google Scholar 

  • Zhao G C, Wang Y J, Huang B C, Dong Y P, Li S Z, Zhang G W, Yu S. 2018. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea. Earth-Sci Rev, 186: 262–286

    Article  Google Scholar 

  • Zhao G C, Han Y G, Yao J L, Liu Q, Zhang D H, Wang C, Tang Q, Zhang J, Yi C Q, Zhang G W. 2022. Environmental effects of assembly and breakup of supercontinents. Acta Geol Sin, 96: 3120–3127

    Google Scholar 

  • Zhao W Z, Shen A J, Zheng J F, Qiao Z F, Wang X F, Lu J M. 2014. The porosity origin of dolostone reservoirs in the Tarim, Sichuan and Ordos basins and its implication to reservoir prediction. Sci China Earth Sci, 57: 2498–2511

    Article  Google Scholar 

  • Zhao W Z, Shen A J, Qiao Z F, Pan L Y, Hu A P, Zhang J. 2018. Genetic types and distinguished characteristics of dolomite and the origin of dolomite reservoirs. Petrol Explor Develop, 45: 923–935

    Article  CAS  Google Scholar 

  • Zhou Y, Yang F L, Ji Y L, Zhou X F, Zhang C H. 2020. Characteristics and controlling factors of dolomite karst reservoirs of the Sinian Dengying Formation, central Sichuan Basin, southwestern China. Precambrian Res, 343: 105708

    Article  CAS  Google Scholar 

  • Zhu D Y, Jin Z J, Zhang R Q, Zhang D W, He Z L, Li S J. 2014. Characteristics and developing mechanism of Sinian Dengying Formation dolomite reservoir with multistage karst. Earth Sci Front, 21: 335–345

    Google Scholar 

  • Zhu D Y, Meng Q Q, Jin Z J, Liu Q Y, Hu W X. 2015a. Formation mechanism of deep Cambrian dolomite reservoirs in the Tarim basin, northwestern China. Mar Pet Geol, 59: 232–244

    Article  CAS  Google Scholar 

  • Zhu D Y, Zhang D W, Zhang R Q, Feng J F, He Z L. 2015b. Eluid alteration mechanism of dolomite reservoirs in Dengying Formation, South China. Acta Petrol Sin, 36: 1188–1198

    CAS  Google Scholar 

  • Zhu G Y, Li X. 2023. Progress in genetic types and research methods of dolomite. Acta Petrol Sin, 44: 1167–1190

    Google Scholar 

  • Zhu G Y, Milkov A V, Zhang Z Y, Sun C H, Zhou X X, Chen F R, Han J F, Zhu Y F. 2019. Formation and preservation of a giant petroleum accumulation in superdeep carbonate reservoirs in the southern Halahatang oil field area, Tarim Basin, China. AAPG Bull, 103: 1703–1743

    Article  Google Scholar 

  • Zhu G Y, Milkov A V, Li J F, Xue N, Chen Y Q, Hu J F, Li T T, Zhang Z Y, Chen Z. 2021. Deepest oil in Asia: Characteristics of petroleum system in the Tarim basin, China. J Pet Sci Eng, 199: 108246

    Article  CAS  Google Scholar 

  • Zhu G Y, Li X, Li T T, Zhou L, Wu Y X, Shen B, Ning M. 2023a. Magnesium isotope trace dolomitization fluid migration path: A case study of the Carboniferous Huanglong Formation in the Sichuan Basin. Acta Geol Sin, 97: 753–771

    Google Scholar 

  • Zhu G Y, Li X, Li T T, Zhou L, Wu Y X, Shen B, Ning M. 2023b. Genesis mechanism and Mg isotope difference between the Sinian and Cambrian dolomites in Tarim Basin. Sci China Earth Sci, 66: 334–357

    Article  CAS  Google Scholar 

  • Zou C, Du J, Xu C, Wang Z, Zhang B, Wei G, Wang T, Yao G, Deng S, Liu J, Zhou H, Xu A, Yang Z, Jiang H, Gu Z. 2014. Formation, distribution, resource potential, and discovery of Sinian-Cambrian giant gas field, Sichuan Basin, SW China. Pet Explor Dev, 41: 306–325

    Article  Google Scholar 

Download references

Acknowledgements

PetroChina Southwest Oil and Gas Field Company has made contributions to on-site sample collection. Zhiyong CHEN, Tingting LI, Weiyan CHEN, Kun ZHAO, Yifei AI, Yan ZHANG, Pengzhen DUAN, Jincheng LIU, Jiakai HOU of China Petroleum Exploration and Development Research Institute also participated in this work. The constructive amendments given by the three reviewers have brought great help to the improvement of the quality of the paper. Here, we would like to express our deep gratitude. This study was supported by the Scientific Research and Technological Development Project of China National Petroleum Corporation (Grant No. 2021DJ05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangyou Zhu.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhu, G. & Zhang, Z. Genesis of ultra-deep dolostone and controlling factors of large-scale reservoir: A case study of the Sinian Dengying Formation and the Cambrian Longwangmiao Formation in the Sichuan Basin. Sci. China Earth Sci. 67, 2352–2382 (2024). https://doi.org/10.1007/s11430-023-1301-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11430-023-1301-x

Keywords

Navigation

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy