Abstract
This paper investigates the origin of ultra-deep dolostone and the factors influencing large-scale dolostone reservoirs, focusing on the Sinian Dengying Formation and the Cambrian Longwangmiao Formation in the Sichuan Basin. The study involves petrology, microscale X-ray diffraction, trace element analysis, and C-O-Sr-Mg isotope experiments to provide a detailed analysis. The research findings indicate that the Dengying and Longwangmiao formations comprise six types of matrix dolostone and four types of cement. The Dengying Formation, which developed under a sedimentary background of a restricted platform, contains special microbial and microcrystalline dolostones. The dolomite grains are small (<30 µm) and have a low order degree (Min=0.55), with large unit cell parameters and an extremely high Na content (Max=788 ppm). The 87Sr/86Sr value of the dolostone is consistent with contemporaneous seawater, while the δ13C and δ18O values are lower than those of the contemporaneous seawater. The δ26Mg value is small (Min=−2.31‰). Powder crystal, fine-crystalline, and calcite dolostones with coarser and more ordered crystals exhibit similar δ13C and 87Sr/86Sr values to microbial and microcrystalline dolostone. During the sedimentary period of the Dengying Formation, ancient marine conditions were favorable for microbial survival. Microorganisms induced the direct precipitation of primary dolomite in seawater, forming microbial and microcrystalline dolostones during the seawater diagenesis period. During the subsequent diagenesis period, dolostones underwent the effects of dissolution-recrystallization, structures, and hydrothermal fluids. This resulted in the formation of dolostone with coarser crystals, a higher degree of order, and various types of cement. The Longwangmiao Formation was developed in an inter-platform beach characterized by special particle dolostone. The particle dolostone has a large grain size (>30 µm), high order degree (Min=0.7), small unit cell parameters, high Na content (Max=432 ppm), and low Fe and Mn content. The δ26Mg and δ13C values are consistent with the contemporaneous seawater, while the δ18O and 87Sr/86Sr values are higher than those of the contemporaneous seawater. There is mutual coupling between multiple-period varying δ26Mg values and sedimentary cycles. The dolostone in the Longwangmiao Formation resulted from the metasomatism of limestone by evaporated seawater. The thickness and scale of the dolostone in the Longwangmiao Formation are controlled by the periodic changes in sea level. The period of dolostone development from the Sinian to the Cambrian coincides with the transition from Rodinia’s breakup to Gondwana’s convergence. These events have resulted in vastly different marine properties, microbial activities, and sedimentary climate backgrounds between the Sinian and the Cambrian. These differences may be the fundamental factors leading to the distinct origins of dolostone formed in the two periods. The distribution of sedimentary facies and deep tectonic activities in the Sichuan Basin from the Sinian to the Cambrian is influenced by the breakup and convergence of the supercontinent. This process plays a key role in determining the distribution, pore formation, preservation, and adjustment mechanisms of ultra-deep dolostone reservoirs. To effectively analyze the genesis and reservoir mechanisms of ultra-deep dolostone in other regions or layers, especially during the specific period of supercontinent breakup and convergence, it is crucial to consider the comprehensive characteristics of seawater properties, microbial activities, sedimentary environment, and fault systems driven by tectonic activities. This can help predict the distribution of high-quality and large-scale ultra-deep dolostone reservoirs.
Similar content being viewed by others
References
Adams A, Diamond L W, Aschwanden L. 2019. Dolomitization by hypersaline reflux into dense groundwaters as revealed by vertical trends in strontium and oxygen isotopes: Upper Muschelkalk, Switzerland. Sedimentology, 66: 362–390
Baker P A, Kastner M. 1981. Constraints on the formation of sedimentary dolomite. Science, 213: 214–216
Bao Z D, Ji H C, Liang T, Wei M Y, Shi Y Q, Li Z F, Lu K, Xiang P F, Zhang H, Yan R, Guo Y X, Li Z L, Wan P, Yang Z B, Ma X D, Liu R, Liu C X, Zhong X L, Guo X Q, Cai Z X, Zhang S C. 2019. Primary dolostones of the Meso-Neoproterozoic: Cases on typical platforms in China (in Chinese). J Palaeogeogr, 21: 869–884
Beinlich A, Mavromatis V, Austrheim H, Oelkers E H. 2014. Inter-mineral Mg isotope fractionation during hydrothermal ultramafic rock alteration—Implications for the global Mg-cycle. Earth Planet Sci Lett, 392: 166–176
Bi D J, Zhai S K, Zhang D J, Liu X F, Liu X Y, Jiang L J, Zhang A B. 2018. Constraints offluid inclusions and C, O isotopic compositions on the origin ofthe dolomites in the Xisha Islands, South China Sea. Chem Geol, 493: 504–517
Bialik O M, Wang X M, Zhao S G, Waldmann N D, Frank R, Li W Q. 2018. Mg isotope response to dolomitization in hinterland-attached carbonate platforms: Outlook of δ26Mg as a tracer of basin restriction and seawater Mg/Ca ratio. Geochim Cosmochim Acta, 235: 189–207
Bontognali T R R, Vasconcelos C, Warthmann R J, Bernasconi S M, Dupraz C, Strohmenger C J, McKenzie J A. 2010. Dolomite formation within microbial mats in the coastal sabkha of Abu Dhabi (United Arab Emirates). Sedimentology, 57: 824–844
Cai C F, Liu D W, Hu Y J, Huang T Y, Jiang Z W, Xu C L. 2023. Interlinked marine cycles of methane, manganese, and sulfate in the post-Marinoan Doushantuo cap dolostone. Geochim Cosmochim Acta, 346: 245–258
Cawood P A, Strachan R A, Pisarevsky S A, Gladkochub D P, Murphy J B. 2016. Linking collisional and accretionary orogens during Rodinia assembly and breakup: Implications for models of supercontinent cycles. Earth Planet Sci Lett, 449: 118–126
Chakhmouradian A R, Reguir E P, Couëslan C, Yang P. 2016. Calcite and dolomite in intrusive carbonatites. II. Trace-element variations. Miner Petrol, 110: 361–377
Chang B, Li C, Liu D, Foster I, Tripati A, Lloyd M K, Maradiaga I, Luo G, An Z, She Z, Xie S, Tong J, Huang J, Algeo T J, Lyons T W, Immenhauser A. 2020. Massive formation of early diagenetic dolomite in the Ediacaran ocean: Constraints on the “dolomite problem”. Proc Natl Acad Sci USA, 117: 14005–14014
Chen D Z, Qian Y X. 2017. Deep or super-deep dolostone reservoirs: Opportunities and challenges (in Chinese). J Palaeogeogr, 19: 187–196
Chen Y N, Shen A J, Pan L Y, Zhang J, Wang X F. 2017. Features, origin and distribution of microbial dolomite reservoirs: A case study of 4th Member of Sinian Dengying Formation in Sichuan Basin, SW China. Petrol Explor Develop, 44: 704–715
Cui X Z, Jiang X S, Wang J, Wang X C, Zhuo J W, Deng Q, Liao S Y, Wu H, Jiang Z F, Wei Y N. 2015. Mid-Neoproterozoic diabase dykes from Xide in the western Yangtze Block, South China: New evidence for continental rifting related to the breakup of Rodinia supercontinent. Precambrian Res, 268: 339–356
Deng S C, Dong H L, Lv G, Jiang H C, Yu B S, Bishop M E. 2010. Microbial dolomite precipitation using sulfate reducing and halophilic bacteria: Results from Qinghai Lake, Tibetan Plateau, NW China. Chem Geol, 278: 151–159
Du J H, Zou C N, Xu C C, He H Q, Shen P, Yang Y M, Li Y L, Wei G Q, Wang Z C, Yang Y. 2014. Theoretical and technical innovations in strategic discovery of a giant gas field in Cambrian Longwangmiao Formation of central Sichuan paleo-uplift, Sichuan Basin. Pet Explor Dev, 41: 294–305
Ehrenberg S N, Eberli G P, Keramati M, Moallemi S A. 2006. Porosity-permeability relationships in interlayered limestone-dolostone reservoirs. AAPG Bull, 90: 91–114
Ehrenberg S N, Nadeau P H, Steen Ø. 2009. Petroleum reservoir porosity versus depth: Influence of geological age. AAPG Bull, 93: 1281–1296
Feng M Y, Qiang Z T, Shen P, Zhang J, Tao Y Z, Xia M L. 2016. Evidences for hydrothermal dolomite of Sinian Dengying Formationin Gaoshiti-Moxi area, Sichuan Basin. Acta Petrol Sin, 37: 587–598
Feng M Y, Wu P C, Qiang Z T, Liu X H, Duan Y, Xia M L. 2017. Hydrothermal dolomite reservoir in the Precambrian Dengying Formation ofcentral Sichuan Basin, southwestern China. Mar Pet Geol, 82: 206–219
Fernández-Remolar D C, Preston L J, Sánchez-Román M, Izawa M R M, Huang L, Southam G, Banerjee N R, Osinski G R, Flemming R, Gómez-Ortíz D, Prieto Ballesteros O, Rodriguez N, Amils R, Darby Dyar M. 2012. Carbonate precipitation under bulk acidic conditions as a potential biosignature for searching life on Mars. Earth Planet Sci Lett, 351–352: 13–26
Findlater G, Shelton A, Rolin T, Andrews J. 2014. Sodium and strontium in mollusc shells: Preservation, palaeosalinity and palaeotemperature of the Middle Pleistocene ofeastern England. Proc Geologists Assoc, 125: 14–19
Foster G L, Pogge von Strandmann P A E, Rae J W B. 2010. Boron and magnesium isotopic composition of seawater. Geochem Geophys Geosyst, 11: 1
Galy A, Yoffe O, Janney P E, Williams R W, Cloquet C, Alard O, Halicz L, Wadhwa M, Hutcheon I D, Ramon E, Carignan J. 2003. Magnesium isotope heterogeneity of the isotopic standard SRM980 and new reference materials for magnesium-isotope-ratio measurements. J Anal At Spectrom, 18: 1352–1356
Gregg J M, Bish D L, Kaczmarek S E, Machel H G. 2015. Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: A review. Sedimentology, 62: 1749–1769
Gu Z D, Wang Z C. 2014. The discovery of Neoproterozoic extensional structures and its significance for gas exploration in the Central Sichuan Block, Sichuan Basin, South China. Sci China Earth Sci, 57: 2758–2768
Guan S W, Wu L, Ren R, Zhu G Y, Peng Z Q, Zhao W T, Li J. 2017. Distribution and petroleum prospect of Precambrian rifts in the main cratons, China. Acta Petrol Sin, 38: 9–22
Guo Z Q, Zhao W Z, Wei G Q, Wen L, Xie W R, Xie Z Y, Yang C L, Wang X B. 2022. Characteristics, evolution, and formation of pressure in the Sinian-Cambrian gas reservoirs of the Anyue gas field, Sichuan Basin, China. AAPG Bull, 106: 1939–1973
Halley R B, Schmoker J W. 1983. High-porosity Cenozoic carbonate rocks of south Florida: Progressive loss of porosity with depth. AAPG Bull, 67: 191–200
Halverson G P, Dudás F Ö, Maloof A C, Bowring S A. 2007. Evolution of the 87Sr/86Sr composition of Neoproterozoic seawater. Palaeogeogr Palaeoclimatol Palaeoecol, 256: 103–129
Heasley E C, Worden R H, Hendry J P. 2000. Cement distribution in a carbonate reservoir: Recognition of a palaeo oil-water contact and its relationship to reservoir quality in the Humbly Grove field, onshore, UK. Mar Pet Geol, 17: 639–654
Higgins J A, Schrag D P. 2015. The Mg isotopic composition ofCenozoic seawater—Evidence for a link between Mg-clays, seawater Mg/Ca, and climate. Earth Planet Sci Lett, 416: 73–81
Higgins J A, Blättler C L, Lundstrom E A, Santiago-Ramos D P, Akhtar A A, Crüger Ahm A S, Bialik O, Holmden C, Bradbury H, Murray S T, Swart P K. 2018. Mineralogy, early marine diagenesis, and the chemistry of shallow-water carbonate sediments. Geochim Cosmochim Acta, 220: 512–534
Hu Y J, Cai C F, Liu D W, Pederson C L, Jiang L, Shen A J, Immenhauser A. 2020. Formation, diagenesis and palaeoenvironmental significance of upper Ediacaran fibrous dolomite cements. Sedimentology, 67: 1161–1187
Hu Y J, Cai C F, Li Y, Liu D W, Wei T Y, Wang D W, Jiang L, Ma R, Shi S Y, Immenhauser A. 2023. Sedimentary and diagenetic archive of a deeply buried, upper Ediacaran microbialite reservoir, southwestern China. AAPG Bull, 107: 387–412
Hu Z Q, Gao Z Q, Liu Z B, Jiang W, Wei D, Li Y. 2022. Characteristics of Cambrian tectonic-lithofacies paleogeography in China and the controls on hydrocarbons. J Pet Sci Eng, 214: 110473
Hu Z Y, Hu W X, Liu C, Sun F N, Liu Y L, Li W Q. 2019. Conservative behavior of Mg isotopes in massive dolostones: From diagenesis to hydrothermal reworking. Sediment Geol, 381: 65–75
Huang K J, Shen B, Lang X G, Tang W B, Peng Y, Ke S, Kaufman A J, Ma H R, Li F B. 2015. Magnesium isotopic compositions of the Mesoproterozoic dolostones: Implications for Mg isotopic systematics of marine carbonates. Geochim Cosmochim Acta, 164: 333–351
Jacobson A D, Zhang Z F, Lundstrom C, Huang F. 2010. Behavior of Mg isotopes during dedolomitization in the Madison Aquifer, South Dakota. Earth Planet Sci Lett, 297: 446–452
Jia C Z, Zhang S C. 2023. The formation ofmarine ultra-deep petroleum in China. Acta Geol Sin, 97: 2775–2801
Jin Z K, Yang Y X, Yu K H, Wang Z, Dong C C. 2012. Genetic types of dolostones in the Cambrian, eastern Tarim Basin (in Chinese). J Palaeogeogr, 14: 747–756
Kenward P A, Fowle D A, Goldstein R H, Ueshima M, González L A, Roberts J A. 2013. Ordered low-temperature dolomite mediated by carboxyl-group density of microbial cell walls. AAPG Bull, 97: 2113–2125
Kretz R. 1982. A model for the distribution of trace elements between calcite and dolomite. Geochim Cosmochim Acta, 46: 1979–1981
Land L S. 1985. The origin of massive dolomite. J Geol Education, 33: 112–125
Land L S. 1998. Failure to Precipitate dolomite at 25°C from dilute solution despite 1000-fold oversaturation after 32 years. Aquat GeoChem, 4: 361–368
Li J H, Wang H H, Li W B, Zhou X B. 2014. Discussion on global tectonics evolution from plate reconstruction in Phanerozoic. Acta Petrol Sin, 35: 207–218
Li J Z, Tao X W, Bai B, Huang S P, Jiang Q C, Zhao Z Y, Chen Y Y, Ma D B, Zhang L P, Li N X, Song W. 2021. Geological conditions, reservoir evolution and favorable exploration directions of marine ultra-deep oil and gas in China. Pet Explor Dev, 48: 60–79
Li W Q, Beard B L, Li C X, Xu H F, Johnson C M. 2015. Experimental calibration of Mg isotope fractionation between dolomite and aqueous solution and its geological implications. Geochim Cosmochim Acta, 157: 164–181
Li W Q, Bialik O M, Wang X M, Yang T, Hu Z Y, Huang Q Y, Zhao S G, Waldmann N D. 2019. Effects of early diagenesis on Mg isotopes in dolomite: The roles of Mn(IV)-reduction and recrystallization. Geochim Cosmochim Acta, 250: 1–17
Li X, Zhu G Y, Li T T, Zhou L, Wu Y X, Tian L J. 2022. Mg isotopic characteristies and genetie mechanism of dolomite of Cambrian Xixiangchi Formation in central Sichuan Basin. Acta Petrol Sin, 43: 1585–1603
Li X, Zhu G Y, Li T T, Zhou L, Wu Y X, Shen B, Ning M. 2023a. Conservative behavior of Mg isotopes in dolomite during diagenesis and hydrothermal alteration: A case study in the Lower Cambrian Qiulitage Formation, Gucheng area, Tarim Basin. Appl Geochem, 148: 105540
Li X, Zhu G Y, Chen Z Y, Li T T, Wang S, Ai Y F, Zhang Y, Tian L J. 2023b. Mg isotopic geochemistry and origin of Early Ordovician dolomite and implications for the formation of high-quality reservoir in the Tabei area, Tarim Basin, NW China. J Asian Earth Sci, 255: 105757
Li X, Zhu G Y, Li T T, Ai Y F, Zhang Y, Wang S, Chen Z Y, Tian L J. 2023c. Genesisof dolostone of the Yingshan Formationin Tarim Basin and Mg isotope evidence. Earth Sci Front, 30: 352–375
Li Y, Qin S F, Wang Y P, Holland G, Zhou Z. 2020. Tracing interaction between hydrocarbon and groundwater systems with isotope signatures preserved in the Anyue gas field, central Sichuan Basin, China. Geochim Cosmochim Acta, 274: 261–285
Li Z X, Zhang L, Powell C M A. 1995. South China in Rodinia: Part of the missing link between Australia-East Antarctica and Laurentia? Geology, 23: 407
Liu D W, Cai C F, Hu Y J, Jiang L, Peng Y Y, Yu R, Qin Q. 2020. Multistage dolomitization process of deep burial dolostones and its influence on pore evolution: A case study of Longwangmiao Formation in the lower Cambrian of central Sichuan Basin. J China Univ Mining Technol, 49: 1150–1165
Liu D W, Cai C F, Hu Y J, Peng Y Y, Jiang L. 2021. Multistage dolomitization and formation ofultra-deep Lower Cambrian Longwangmiao Formation reservoir in central Sichuan Basin, China. Mar Pet Geol, 123: 104752
Liu S B, Jin S D, Liu Y, Chen A Q. 2022. Astronomical forced sequence infill of Early Cambrian Qiongzhusi organic-rich shale of Sichuan Basin, South China. Sediment Geol, 440: 106261
Lucia F J. 2004. Origin and petrophysics ofdolostone pore space. Geol Soc Lond Spec Publ, 235: 141–155
Lukoczki G, Haas J, Gregg J M, Machel H G, Kele S, John C M. 2020. Early dolomitization and partial burial recrystallization: A case study of Middle Triassic peritidal dolomites in the Villany Hills (SW Hungary) using petrography, carbon, oxygen, strontium and clumped isotope data. Int J Earth Sci-Geol Rund, 109: 1051–1070
Ma X H, Yang Y, Wen L, Luo B. 2019. Distribution and exploration direction of medium- and large-sized marine carbonate gas fields in Sichuan Basin, SW China. Pet Explor Dev, 46: 1–15
Machel H G. 1997. Recrystallization versus neomorphism, and the concept of ‘significant recrystallization’ in dolomite research. Sediment Geol, 113: 161–168
Machel H G. 2004. Concepts and models of dolomitization: A critical reappraisal. Geol Soc Lond Spec Publ, 235: 7–63
Mavromatis V, Meister P, Oelkers E H. 2014. Using stable Mg isotopes to distinguish dolomite formation mechanisms: A case study from the Peru Margin. Chem Geol, 385: 84–91
McCormack J, Bontognali T R R, Immenhauser A, Kwiecien O. 2018. Controls on cyclic formation of Quaternary early diagenetic dolomite. Geophys Res Lett, 45: 3625–3634
Meister P, Gutjahr M, Frank M, Bernasconi S M, Vasconcelos C, McKenzie J A. 2011. Dolomite formation within the methanogenic zone induced by tectonically driven fluids in the Peru accretionary prism. Geology, 39: 563–566
Merlini M, Cerantola V, Gatta G D, Gemmi M, Hanfland M, Kupenko I, Lotti P, Müller H, Zhang L. 2017. Dolomite-IV: Candidate structure for a carbonate in the Earth’s lower mantle. Am Mineral, 102: 1763–1766
Moore T S, Murray RW, Kurtz A C, Schrag D P. 2004. Anaerobic methane oxidation and the formation of dolomite. Earth Planet Sci Lett, 229: 141–154
Nance R D, Murphy J B. 2013. Origins ofthe supercontinent cycle. Geosci Front, 4: 439–448
Nance R D, Murphy J B, Santosh M. 2014. The supercontinent cycle: A retrospective essay. Gondwana Res, 25: 4–29
Ning M, Lang X G, Huang K J, Li C, Huang T Z, Yuan H L, Xing C C, Yang R Y, Shen B. 2020. Towards understanding the origin of massive dolostones. Earth Planet Sci Lett, 545: 116403
Peng B, Li Z X, Li G R, Liu C L, Zhu S F, Zhang W, Zuo Y, Guo Y C, Wei X J. 2018. Multiple dolomitization and fluid flow events in the Precambrian Dengying Formation of Sichuan Basin, Southwestern China. Acta Geol Sin-Engl Ed, 92: 311–332
Peng Y, Shen B, Lang X G, Huang K J, Chen J T, Yan Z, Tang W B, Ke S, Ma H R, Li F B. 2016. Constraining dolomitization by Mg isotopes: A case study from partially dolomitized limestones of the middle Cambrian Xuzhuang Formation, North China. Geochem Geophys Geosyst, 17: 1109–1129
Pina C M, Pimentel C, Crespo Á. 2020. Dolomite cation order in the geological record. Chem Geol, 547: 119667
Pinilla C, Blanchard M, Balan E, Natarajan S K, Vuilleumier R, Mauri F. 2015. Equilibrium magnesium isotope fractionation between aqueous Mg2+ and carbonate minerals: Insights from path integral molecular dynamics. Geochim Cosmochim Acta, 163: 126–139
Qiao Z F, Yu Z, She M, Pan L Y, Zhang T F, Li W Z, Shen A J. 2023. Progresses on ancient ultra-deeply buriedmarine carbonate reservoir in China (in Chinese). J Palaeogeogr, 25: 1257–1276
Qiu X, Wang H M, Yao Y C, Duan Y. 2017. High salinity facilitates dolomite precipitation mediated by Haloferax volcanii DS52. Earth Planet Sci Lett, 472: 197–205
Roberts J A, Kenward P A, Fowle D A, Goldstein R H, González L A, Moore D S. 2013. Surface chemistry allows for abiotic precipitation of dolomite at low temperature. Proc Natl Acad Sci USA, 110: 14540–14545
Roest-Ellis S, Strauss J V, Tosca N J. 2021. Experimental constraints on nonskeletal CaCO3 precipitation from Proterozoic seawater. Geology, 49: 561–565
Rott C M, Qing H R. 2013. Early dolomitization and recrystallization in shallow marine carbonates, Mississippian Alida Beds, Williston Basin (Canada): Evidence from petrography and isotope geochemistry. J Sediment Res, 83: 928–941
Schmoker J W, Halley R B. 1982. Carbonate porosity versus depth: A predictable relation for south Florida. AAPG Bull, 66: 2561–2570
Shan X Q, Zhang J, Zhang B M, Liu J J, Zhou H, Wang Y J, Fu Z W. 2016. Dolomite karst reservoir characteristies and dissolution evidences of Sinian Dengying Formation, Sichuan Basin. Acta Petrol Sin, 37: 17–29
Shen A J, Hu A P, Cheng T, Liang F, Pan W Q, Feng Y X, Zhao J X. 2019. Laser ablation in situ U-Pb dating and its application to diagenesis-porosity evolution of carbonate reservoirs. Pet Explor Dev, 46: 1127–1140
Shen A J, Luo X Y, Hu A P, Qiao Z F, Zhang J. 2022. Dolomitization evolution and its effects on hydrocarbon reservoir formation from penecontemporaneous to deep burial environment. Pet Explor Dev, 49: 731–743
Sibley D F, Gregg J M. 1987. Classification of dolomite rock textures. J Sediment Res, 57: 967–975
Su Z T, Yu W, Liao H H, Hu S L, Liu G Q, Ma H. 2022. Research progress and development trend of the genesis of dolomite reservoirs. Nat Gas Geosci, 33: 1175–1188
Sun D S, Li S J, Li J J, Li Y Q, Yang T B, Feng X K, Li H L, Han Z Z, He Z L. 2022. Insights from a comparison of hydrocarbon accumulation conditions of Sinian-Cambrian between the Tarim and the Sichuan Basins. Acta Geol Sin, 96: 249–264
Sun L D, Zou C N, Zhu R K, Zhang Y H, Zhang S C, Zhang B M, Zhu G Y, Gao Z Y. 2013. Formation, distribution and potential of deep hydrocarbon resources in China. Pet Explor Dev, 40: 687–695
Sun S Q. 1995. Dolomite reservoirs: Porosity evolution and reservoir characteristics. AAPG Bull, 79: 186–204
Teng F Z. 2017. Magnesium isotope geochemistry. Rev Mineral Geochem, 82: 219–287
Teng F Z, Li W Y, Ke S, Yang W, Liu S A, Sedaghatpour F, Wang S J, Huang K J, Hu Y, Ling M X, Xiao Y, Liu X M, Li X W, Gu H O, Sio C K, Wallace D A, Su B X, Zhao L, Chamberlin J, Harrington M, Brewer A. 2015. Magnesium isotopic compositions of international geological reference materials. Geostand Geoanal Res, 39: 329–339
van Lith Y, Vasconcelos C, Warthmann R, Martins J C F, McKenzie J A. 2002. Bacterial sulfate reduction and salinity: Two controls on dolomite precipitation in Lagoa Vermelha and Brejo do Espinho (Brazil). Hydrobiologia, 485: 35–49
van Smeerdijk Hood A, Wallace M W. 2018. Neoproterozoic marine carbonates and their paleoceanographic significance. Glob Planet Change, 160: 28–45
Vasconcelos C, McKenzie J A. 1997. Microbial mediation of modern dolomite precipitation and diagenesis under anoxic conditions (Lagoa Vermelha, Rio de Janeiro, Brazil). J Sediment Res, 67: 378–390
Vasconcelos C, McKenzie J A, Bernasconi S, Grujic D, Tiens A J. 1995. Microbial mediation as a possible mechanism for natural dolomite formation at low temperatures. Nature, 377: 220–222
Veizer J, Ala D, Azmy K, Bruckschen P, Buhl D, Bruhn F, Carden G A F, Diener A, Ebneth S, Godderis Y, Jasper T, Korte C, Pawellek F, Podlaha O G, Strauss H. 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem Geol, 161: 59–88
Walker G, Abumere O E, Kamaluddin B. 1989. Luminescence spectroscopy of Mn2+ rock-forming carbonates. Mineral Mag, 53: 201–211
Wallace M W, van Smeerdijk H A, Fayle J, Hordern E S, O’Hare T F. 2019. Neoproterozoic marine dolomite hardgrounds and their relationship to cap dolomites. Precambrian Res, 328: 269–286
Wang G Z, Liu S G, Li N, Wang D, Gao Y. 2014. Formation and preservation mechanism ofhigh quality reservoir in deep burial dolomite in the Dengying Formation on the northern margin of the Sichuan Basin. Acta Petrol Sin, 30: 667–678
Wang J B, He Z L, Zhu D Y, Liu Q Y, Ding Q, Li S J, Zhang D W. 2020. Petrological and geochemical characteristics of the botryoidal dolomite of Dengying Formation in the Yangtze Craton, South China: Constraints on terminal Ediacaran “dolomite seas”. Sediment Geol, 406: 105722
Wang J Y, Jin Z K. 2022. Formation mechanism, identification markers, questions and regarding microbial dolomite. Acta Sedimentol Sin, 40: 350–359
Wang J Y, Tarhan L G, Jacobson A D, Oehlert A M, Planavsky N J. 2023. The evolution of the marine carbonate factory. Nature, 615: 265–269
Wang P, Wang G W, Chen Y Q H F, Yang X Z, Hu F J, Zhou L, Yi Y, Yang G, Wang X X, Cong F Y. 2023. Formation and preservation of ultra-deep high-quality dolomite reservoirs under the coupling of sedimentation and diagenesis in the central Tarim Basin, NW China. Mar Pet Geol, 149: 106084
Wang Y, Shi Z J, Qing H R, Tian Y M, Gong X X. 2021a. Petrological characteristics, geochemical characteristics, and dolomite model of the lower Cambrian Longwangmiao Formation in the periphery of the Sichuan Basin, China. J Pet Sci Eng, 202: 108432
Wang Y, Shi Z J, Meng X P, Liu P J, Tian Y M, Qing H R. 2021b. Burial dolomitization and mixed water dolomitization in Longwangmiao Formation, southeastern Sichuan Basin. Acta Sedimentol Sin, 39: 1517–1531
Warren J K. 2021. Evaporitedeposits. In: Alderton D, Elias S A. eds. Encyclopedia of Geology. 2nd ed. Oxford: Academic Press. 945–977
Warren J. 2000. Dolomite: Occurrence, evolution and economically important associations. Earth-Sci Rev, 52: 1–81
Wei G Q, Chen G S, Du S M, Zhang L, Yang W. 2008. Petroleum systems of the oldest gas field in China: Neoproterozoic gas pools in the Weiyuan gas field, Sichuan Basin. Mar Pet Geol, 25: 371–386
Weyl P K. 1960. Porosity through dolomitization: Conservation-of-mass requirements. J Sediment Res, 30: 85–90
Wood R A, Zhuravlev A Y, Sukhov S S, Zhu M Y, Zhao F C. 2017. Demise of Ediacaran dolomitic seas marks widespread biomineralization on the Siberian Platform. Geology, 45: 27–30
Xiao Q, Xia Z C, She Z B, Papineau D, Luo G M, Chang B, Liu D, Mason R, Li M T, Li C. 2024. Ubiquitous occurrence of organogenic dolomite in a late Ediacaran limestone-dominated succession from the Eastern Yangtze Gorges area of South China. Precambrian Res, 400: 107269
Yang F X, Wang X Z, Yang Y M, Li X Y, Jiang N, Xie J R, Luo W J. 2015. Diagenesis of the dolomite reservoir in Lower Cambrian Longwangmiao Formation in central Sichuan Basin. Geol Sci Technol Inform, 34: 35–41
Yang L L, Zhu G Y, Li X W, Liu K Y, Yu L J, Gao Z Y. 2022. Influence of crystal nucleus and lattice defects on dolomite growth: Geological implications for carbonate reservoirs. Chem Geol, 587: 120631
Yang W Q, Liu Z, Chen H R, Lan C J, Xu Z H, Lu C J, Zou H Y. 2020a. Depositional combination of carbonate grain banks of the Lower Cambrian Longwangmiao Formation in Sichuan Basin and its control on reservoirs. J Palaeogeogr, 22: 251–265
Yang W, Wei G Q, Zhao R R, Liu M C, Jin H, Zhao Z A, Shen J H. 2014. Characteristics and distribution of karst reservoirs in the Sinian Dengying Fm, Sichuan Basin. Nat Gas Indust, 34: 55–60
Yang W, Wei G Q, Xie W R, Ma Y S, Jin H, Su N, Wu S J. 2020b. Main controlling factors and genetic mechanism for the development of high qualityreservoirs in Longwangmiao Formation, central Sichuan Basin. Acta Petrol Sin, 41: 421–432
Zempolich W G, Wilkinson B H, Lohmann K C. 1988. Diagenesis of Late Proterozoic carbonates: The beck spring dolomite ofEastern California. J Sediment Res, 58: 656–672
Zhang G W, Guo A L, Wang Y J, Li S Z, Dong Y P, Liu S F, He D F, Cheng S Y, Lu R K, Yao A P. 2013. Tectonics of South China continent and its implications. Sci China Earth Sci, 56: 1804–1828
Zhang J, Jones B, Zhang J Y. 2014. Crystal structure of replacement dolomite with different buried depths and its significance to study of dolomite reservoir. China Petrol Explor, 19: 21–28
Zhang M L, Guo Z H, Zhang L, Fu J, Zheng G Q, Xie W R, Ma S Y. 2021. Characteristics of and main factors controlling the karst shoal reservoir of the lower Cambrian Longwangmiao Formation in the Anyue gas field, central Sichuan Basin, China. Earth Sci Front, 28: 235–248
Zhang P W, Liu G D, Cai C F, Li M J, Chen R Q, Gao P, Xu C L, Wan W C, Zhang Y Y, Jiang M Y. 2019. Alteration of solid bitumen by hydrothermal heating and thermochemical sulfate reduction in the Ediacaran and Cambrian dolomite reservoirs in the Central Sichuan Basin, SW China. Precambrian Res, 321: 277–302
Zhang P, Huang K J, Luo M, Cai Y P, Bao Z A. 2022. Constraining the terminal Ediacaran seawater chemistry by Mg isotopes in dolostones from the Yangtze Platform, South China. Precambrian Res, 377: 106700
Zhao B S, Long X P, Luo J, Dong Y P, Lan C Y, Wang J Y, Wu B. 2022. Late Neoproterozoic to early Paleozoic paleogeographic position of the Yangtze block and the change of tectonic setting in its northwestern margin: Evidence from detrital zircon U-Pb ages and Hf isotopes of sedimentary rocks. GSA Bull, 134: 335–347
Zhao G C, Wang Y J, Huang B C, Dong Y P, Li S Z, Zhang G W, Yu S. 2018. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea. Earth-Sci Rev, 186: 262–286
Zhao G C, Han Y G, Yao J L, Liu Q, Zhang D H, Wang C, Tang Q, Zhang J, Yi C Q, Zhang G W. 2022. Environmental effects of assembly and breakup of supercontinents. Acta Geol Sin, 96: 3120–3127
Zhao W Z, Shen A J, Zheng J F, Qiao Z F, Wang X F, Lu J M. 2014. The porosity origin of dolostone reservoirs in the Tarim, Sichuan and Ordos basins and its implication to reservoir prediction. Sci China Earth Sci, 57: 2498–2511
Zhao W Z, Shen A J, Qiao Z F, Pan L Y, Hu A P, Zhang J. 2018. Genetic types and distinguished characteristics of dolomite and the origin of dolomite reservoirs. Petrol Explor Develop, 45: 923–935
Zhou Y, Yang F L, Ji Y L, Zhou X F, Zhang C H. 2020. Characteristics and controlling factors of dolomite karst reservoirs of the Sinian Dengying Formation, central Sichuan Basin, southwestern China. Precambrian Res, 343: 105708
Zhu D Y, Jin Z J, Zhang R Q, Zhang D W, He Z L, Li S J. 2014. Characteristics and developing mechanism of Sinian Dengying Formation dolomite reservoir with multistage karst. Earth Sci Front, 21: 335–345
Zhu D Y, Meng Q Q, Jin Z J, Liu Q Y, Hu W X. 2015a. Formation mechanism of deep Cambrian dolomite reservoirs in the Tarim basin, northwestern China. Mar Pet Geol, 59: 232–244
Zhu D Y, Zhang D W, Zhang R Q, Feng J F, He Z L. 2015b. Eluid alteration mechanism of dolomite reservoirs in Dengying Formation, South China. Acta Petrol Sin, 36: 1188–1198
Zhu G Y, Li X. 2023. Progress in genetic types and research methods of dolomite. Acta Petrol Sin, 44: 1167–1190
Zhu G Y, Milkov A V, Zhang Z Y, Sun C H, Zhou X X, Chen F R, Han J F, Zhu Y F. 2019. Formation and preservation of a giant petroleum accumulation in superdeep carbonate reservoirs in the southern Halahatang oil field area, Tarim Basin, China. AAPG Bull, 103: 1703–1743
Zhu G Y, Milkov A V, Li J F, Xue N, Chen Y Q, Hu J F, Li T T, Zhang Z Y, Chen Z. 2021. Deepest oil in Asia: Characteristics of petroleum system in the Tarim basin, China. J Pet Sci Eng, 199: 108246
Zhu G Y, Li X, Li T T, Zhou L, Wu Y X, Shen B, Ning M. 2023a. Magnesium isotope trace dolomitization fluid migration path: A case study of the Carboniferous Huanglong Formation in the Sichuan Basin. Acta Geol Sin, 97: 753–771
Zhu G Y, Li X, Li T T, Zhou L, Wu Y X, Shen B, Ning M. 2023b. Genesis mechanism and Mg isotope difference between the Sinian and Cambrian dolomites in Tarim Basin. Sci China Earth Sci, 66: 334–357
Zou C, Du J, Xu C, Wang Z, Zhang B, Wei G, Wang T, Yao G, Deng S, Liu J, Zhou H, Xu A, Yang Z, Jiang H, Gu Z. 2014. Formation, distribution, resource potential, and discovery of Sinian-Cambrian giant gas field, Sichuan Basin, SW China. Pet Explor Dev, 41: 306–325
Acknowledgements
PetroChina Southwest Oil and Gas Field Company has made contributions to on-site sample collection. Zhiyong CHEN, Tingting LI, Weiyan CHEN, Kun ZHAO, Yifei AI, Yan ZHANG, Pengzhen DUAN, Jincheng LIU, Jiakai HOU of China Petroleum Exploration and Development Research Institute also participated in this work. The constructive amendments given by the three reviewers have brought great help to the improvement of the quality of the paper. Here, we would like to express our deep gratitude. This study was supported by the Scientific Research and Technological Development Project of China National Petroleum Corporation (Grant No. 2021DJ05).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest The authors declare that they have no conflict of interest.
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Li, X., Zhu, G. & Zhang, Z. Genesis of ultra-deep dolostone and controlling factors of large-scale reservoir: A case study of the Sinian Dengying Formation and the Cambrian Longwangmiao Formation in the Sichuan Basin. Sci. China Earth Sci. 67, 2352–2382 (2024). https://doi.org/10.1007/s11430-023-1301-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11430-023-1301-x