Abstract
A new fast two-dimension 8×8 discrete cosine transform (2D 8×8 DCT) algorithm based on the characteristics of the basic images of 2D DCT is presented. The new algorithm computes each DCT coefficient in turn more independently. Hence, the new algorithm is suitable for 2D DCT pruning algorithm of pruning away any number of high-frequency components of 2D DCT. The proposed pruning algorithm is more efficient than the existing pruning 2D DCT algorithms in terms of the number of arithmetic operations, especially the number of multiplications required in the computation.
Similar content being viewed by others
References
Pennebaker W B, Mitchell J L. JPEG Still Image Data Compression Standard. New York: Van Nostrand Reinhold, 1993
Mitchell J L, Pennebaker W B, Fogg C E, et al. MPEG Video Compression Standard. New York: Chapman and Hall, 1997
Feig E, Winograd S. Fast algorithms for the discrete cosine transform. IEEE Trans Signal Process, 1992, 40(9): 2174–2193
Leoffler C, Ligtenberg A, Moschytz G S. Practical fast 1D DCT algorithms with 11 mutiplications. In: Proc. IEEE ICASSP, 1989, 2: 988–991
Lee B G. A new algorithm to compute the discrete cosine transform. IEEE Trans Acoustic, Speech, Signal Process, 1984, 32(12): 1243–1245
Chen WH, Smith C H, Fralick S C. A fast computational algorithm for the discrete cosine transform. IEEE Trans Commun, 1977, 25(9): 1004–1009
Ahmed N, Natarajan T, Rao K R. Discrete cosine transform. IEEE Trans Comput, 1974, 23(1): 90–93
Vetterli M, Nussbaumer H. Simple FFT and DCT algorithms with reduced number of operations. Signal Process, 1984, 6:267–278
Suehiro N, Hateri M. Fast algorithms for the DFT and other sinusoidal transforms. IEEE Trans Acoustic, Signal, and Speech Process, 1986, 34(6): 642–644
Arai Y, Agui T, Nakajima M. A fast DCT-SQ scheme for images. Trans IEICE, 1988, 71(11): 1095–1097
Hou H S. A fast recursive algorithm for computing the discrete cosine transform. IEEE Trans Acoustic, Speech, Signal Process, 1987, 35(10): 1445–1461
Duhamel P, Guillemot C. Polynomial transform computation of 2-D DCT. In: Proc. ICASSP, 1990. 1515–1518
Kamanagar F A, Rao K R. Fast algorithms for the 2-D discrete cosine transform. IEEE Trans Comput, 1982, 31(9): 899–906
Huang Y M, Wu J L. A refined fast 2-D discrete cosine transform algorithm. IEEE Trans Signal Process, 1999, 47(3): 904–907
Skodras A N. Direct transform to computation. IEEE Signal Process Lett, 1999, 6: 202–204
Liang J. Fast multiplierless approximations of the DCT with the lifting scheme. IEEE Trans Signal Process, 2001, 49(12): 3032–3044
Cho N I, Lee S U. A fast 4×4 algorithm for the recursive 2-D DCT. IEEE Trans Signal Process, 1992, 40(9): 2166–2173
Cho N I, Lee S U. Fast algorithm and implementation of 2-D discrete cosine transform. IEEE Trans Circuits Syst, 1991, 38: 297–305
Chan S C, Ho K L. A new two-dimensional fast cosine transform. IEEE Trans Signal Process, 1991, 39: 481–485
Ma C. A fast recursive two-dimensional cosine transform. In: Proc SPIEInt Soc Opt Eng, 1988. 541–548
Vetterli M. Fast 2-D discrete cosine transform. In: Proc. ICASSP, 1985. 1538–1541
Duhamel P, Guillemot C. Polynomial transform computation of 2-D DCT. In: Proc. ICASSP, 1990. 1515–1518
Skodras A N. Fast discrete cosine transform pruning. IEEE Trans Signal Process, 1994, 42(7): 1833–1837
Wang Z. Pruning the fast discrete cosine transform. IEEE Trans Commun, 1991, 39(5): 640–643
Huang Y, Wu J, Chang C. A generalized output pruning algorithm for matrix-vector multiplication and its application to computing pruning discrete cosine transform. IEEE Trans Signal Process, 2000, 48(2): 561–563
Walmsley N P, Skodras A N, Curtis K M. A fast picture compression technique. IEEE Trans Consum Elect, 1994, 40(1):11–19
Christopoulos C A, Skodras A N. Pruning the two-dimensional fast cosine transform. In: Proceedings of the VII European Signal Processing Conference (EUSIPCO), Edinburgh, Scotland, UK, 1994. 596–599
Silva A, Navarro A. Fast 8×8 DCT pruning algorithm. In: IEEE International Conference on Image Processing, 2005, 2: 317–320
Ji X H, Zhang C M. A fast IDCT algorithm for image decompression. Chinese J Comput, 2005, 28(12): 2079–2088
Ji X H. Fast DCT algorithm for low bit-rate image compression. Chinese J Comput-aided Design & Comput Graph, 2004, 16(10): 1355–1359
Author information
Authors and Affiliations
Corresponding author
Additional information
Supported by the National Basic Research Program of China (Grant No. 2006CB303102), the National Natural Science Foundation of China (Grant Nos. 60573114, 60533030 and 60573181)
Rights and permissions
About this article
Cite this article
Ji, X., Zhang, C., Wang, J. et al. Fast 2-D 8×8 discrete cosine transform algorithm for image coding. Sci. China Ser. F-Inf. Sci. 52, 215–225 (2009). https://doi.org/10.1007/s11432-009-0038-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11432-009-0038-4